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Abstract

Intellectual expertise is knowledge and ability that a person has that allows them to solve extremely
complex problems. It is important to understand how people become experts so that we can improve
educational strategies, and help learners achieve their full academic potential. Unfortunately, the
process of acquiring intellectual expertise is not well understood. The goal of this research is to build
and test a computational theory of this process. My approach is to train artificial neural networks
(ANNs) as a model of expert human learning. ANNs address many of the difficulties found in
trying to study expertise in humans; they have already been successful in modeling other types of
human learning. In completed work, I have built a first version of the model and used it to confirm
two hypotheses: (1) An artificial neural network can be used as a model to investigate how people
learn under different training scenarios. (2) Different methods for delivering the training material
result in different final performance, and best performance is achieved by incrementally increasing
the complexity of the material. I propose to complete the dissertation by testing a third hypothesis:
Different delivery methods result in different internal conceptual representations and conceptual
development, which in turn is responsible for the different performance. The results suggest that
psychological learning theory should be considered when designing instructional strategies. My
research has shown that, in contrast with symbolic models of cognition, connectionist models are
able to model the human learning process, and provide practical insights into how people should be
trained.

1 Introduction

An intellectual expert has achieved a level of cognitive development in which she or he can rapidly
grasp subtleties of complex problems, and produce very high quality solutions. As the meanings
of ”rapid” and ”very high quality” are influenced by societal values, there is no measurable level
at which we can officially declare someone to have achieved the status of ”expert”. On the other
hand, when deciding if a person is an expert in a given subject, it is often relatively easy to reach
consensus.

A goal of formal education is to help students achieve an expert level of understanding in their
chosen field. It is important to understand the nature of expertise so that we can improve educational
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strategies. As a result of many research studies about expertise, we know a lot about the character-
istics of experts. However, there is a lot we don’t understand about how to become an expert. It is
not easy to create experts, whether human or computational. The learning process is complex and
human studies are difficult. Understanding how to acquire intellectual expertise has proven elusive
for educators, psychologists and students alike.

A primary goal of this study is to increase understanding of the process by which humans
become intellectual experts, in particular: how can people develop the ability to identify solution
strategies just by looking at them? The second main goal is to understand this process in the context
of formal instruction; specifically, how does the strategy by which material is delivered to the learner
affect their learning and conceptual development? I am testing the hypothesis that the acquisition
of intellectual expertise takes place within the human mind via a statistical learning process that
can be understood using a distributed computational model. I propose to show that artificial neural
networks (ANNs) can provide valuable insight into delivery methods (the presentation of material),
insight not easily obtainable through conventional studies.

In this document, I present results from a series of experiments examining how different deliv-
ery methods influence learning and conceptual development. These experiments use a real-world
adult educational problem: the ability to identify correct solution strategies for calculus integration
problems.

The work completed so far has focused on two hypotheses. Hypothesis 1: An artificial neural
network can be used as a model to investigate how people learn under different training scenarios.
The main results include: (1) errors are higher on final exams when problem types are learned in
isolation; (2) cramming just prior to taking final exams is associated with poor retention of material.
Hypothesis 2: Different delivery methods result in different overall performance. The main results
include: different delivery strategies affect learning in different ways: (1) traditional sequential
delivery methods inhibit learning and retention; (2) integrated delivery methods increase learning
and retention; (3) the best performance comes from delivery methods that incrementally increase
the complexity of material.

For the completion of my dissertation I propose to test Hypothesis 3: Different delivery meth-
ods will result in different internal conceptual representations and conceptual development. I will
test this hypothesis by analyzing the conceptual development that took place during each type of
completed experiment. I will analyze this data across experimental types and in the context of what
is known about human conceptual development.

The remainder of this document is structured as follows. The Background section defines intel-
lectual expertise and makes the case for using connectionist computational models to study cogni-
tion. The Background also introduces and justifies my choice of calculus integration as a domain
topic for experimentation. The Model section introduces the ANN model for how intellectual exper-
tise can be acquired. The Experiments sections describe three sets of completed experiments, which
correspond to three delivery and assessment strategies for academic course material. The Proposed
Work section describes how I intend to continue my research to understand the conceptual basis of
the observed results. In the final two sections I provide a psychological learning theory perspective
on my results, and contrast my approach with the symbolic approach to computationally modeling
expertise.
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2 Background and Previous Work

The purpose of this section is to provide the psychological, computational and educational context
for understanding the rest of this document. I begin in section 2.1 with a review of what is known
about the attributes and behaviors of experts. In Section 2.2 I discuss the difficulties with studying
the acquisition of intellectual expertise in humans, and review connectionist models as a way to
address these problems. In Section 2.3 I introduce calculus learning as a domain for studying the
acquisition of intellectual expertise. First I discuss national concerns with mathematics education,
and then I review studies showing that calculus is a cognitively difficult subject for learners.

2.1 What is Intellectual Expertise?

Because “expert” is a commonly used, yet loosely understood term, it is reasonable to begin with
a dictionary definition. The American Heritage Dictionary defines an expert as “A person with a
high degree of skill in or knowledge of a certain subject” and expertise as “Skill or knowledge in
a particular area”(Editor 2000). Unfortunately, and as many educators would readily admit, these
definitions are not very helpful as guides for instruction. They do not capture the full depth and
complexity of intellectual expertise.

Studies of human expertise and understanding have revealed key information about experts.
The first set of findings serves to define the attributes and behavior of experts. In seminal studies,
DeGroot (1966) and Chase and Simon (1973) showed that experts possess large domain knowledge
and an advanced ability to see patterns. It is this combination that underpins the ability to think
critically and solve problems. We also know, from another classic study, that experts and novices
categorize problems differently, and that this categorization takes place before the subject attempts
to solve the problem (Chi, Feltovich, and Glaser 1981). The same study claimed that the schema
containing the categorization includes potential solution methods. Other studies have confirmed the
ability of experts to categorize problems without solving them (Hinsley, Hayes, and Simon 1977)
(Robinson and Hayes 1978). Finally, there is also strong evidence that routine problems are solved
not by intense calculating but rather by recognizing a type of problem (classifying) and then using
the stored knowledge about how to solve problems of that type (Reiman & Chi ’89 referenced in
(Ross and Spalding 1991).

Most studies of expertise have focused on what an expert knows, rather than the process by
which she or he attained expertise (Duffy, Lowyck, and Jonassen 1993). As a result, we know a
lot less about this learning process than we do about expertise itself. The second, much smaller,
set of findings about experts describes the learning process humans go through to achieve levels of
expertise. Nevertheless, we know that understanding is closely connected to the ability of a learner
to correctly generalize and transfer concepts (Bransford, Brown, and Cocking 2000). Unfortunately,
although experts demonstrably ”understand” in a manner that novices do not, it is still unclear just
what “understanding” means. There is substantial evidence that deep understanding involves pri-
marily the restructuring of existing conceptions of reality as opposed to adding new ones (Fosnot
1996). Strong evidence supports the claim that expert behavior does not simply follow a script: the
greatest expertise is the result of long-term practice (Hayes 1989) that is consciously goal directed,
self-monitoring, and self-adjusting within the setting of each particular problem task (Garner 1990).
In addition, many studies have shown that meta-cognition (self-appraisal and self-management of
cognition) is critical for successful academic learning (literature surveyed and discussed in Paris and
Winograd (1990)). Since we know that experts categorize extremely well, it is possible that catego-
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rization ability and goal-directed meta-cognition enhance one another. When categorization ability
and goal-directed meta-cognition merge, intuition may be the result: there is strong evidence that
experts rely upon their accurate intuition and a holistic recognition of appropriate actions (Dreyfus
and Dreyfus 1986).

2.2 The Case for Connectionist Models of Cognition

This section describes how connectionist computational models can provide insight into how people
become experts. Section 2.2.1 reviews common approaches to studying cognition using human
subjects, and the limitations of these approaches. Section 2.2.2 discusses the advantages of using
computational models to study cognition, and then reviews previous connectionist research into
learning.

2.2.1 The Difficulty with Studying Expertise Acquisition in Humans

Research on human cognition takes place within many disciplines and at many levels, ranging from
neuro-biological analysis to field observations. Traditionally, many such studies have focused on
tightly controlled and isolated phenomena. This control tries to eliminate irrelevant data and pro-
vide generalizable results. Unfortunately, it is difficult to apply these results to realistic learning
situations, which tend to be uncontrolled and strongly influenced by the environment. Adult human
learners, for example, rarely study under tightly controlled conditions. Their intellectual tasks are
often extremely complex. As a result, it is unclear how to apply experimental results to academic
teaching and learning: we cannot simply assume that results transfer to more complex problems or
a different population. This concern is particularly relevant for the study of intellectual expertise.
Since expertise is all about managing complexity, complex problems need to be the focus of study.

Another experimental approach is that taken by many recent educational studies, which borrow
qualitative research methodologies from the social sciences. Qualitative methodologies traditionally
focus in great detail upon a small number of human subjects. As a result, they provide a holistic un-
derstanding of phenomena. Unfortunately, the small sample size means that results from qualitative
studies cannot be generalized beyond the study population.

2.2.2 Connectionist Models of Learning and Cognition

Computational studies can avoid many of these difficulties. They have many well-established
advantages over working with live subjects. First, computational models can bridge disciplinary
boundaries and provide insight not easily obtainable through conventional studies on humans. For
example, unexpected or easily overlooked trends and patterns of behavior may stand out in graph-
ical analyses. Second, successful simulation results make a strong argument for supporting human
studies that otherwise might lack political or financial support. Third, simulations and models can
minimize the impact of the complexity of phenomena without ignoring it. Fourth, simulations can
make it easier to study poorly poorly understood phenomena, such as potentially risky hypotheses,
without risking human participants. Finally, simulations can appear to compress time. This allows
the researcher to perform longitudinal investigations that would otherwise be impractical or even
impossible to do.

Modern studies in neuroscience have demonstrated that the brain has a parallel and highly inter-
connected structure. We know that during learning neurons are physically rewired, and connection
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strengths change (Bransford et al. 2000). This information has inspired the branch of computational
cognitive studies known as connectionism (Rosenblatt 1958). Learning is posited to occur via the
interaction of many components, which simultaneously constrain one another. Instead of a single
processor, there are many processing elements. This architectural interpretation leads to the con-
clusion that knowledge is implicit in the structure of the device (brain or computer) as opposed to
being explicit in a given state (Rumelhart 1998). Changing patterns of connectivity determine what
is known and how the system responds to future input.

Connectionist models may provide answers for many classes of cognition problems. The chances
for these successes are high because connectionist models have properties that align well with prop-
erties of human cognition. For example, the memory behavior of human experts exploits rapid
pattern matching and completion, and recognition response (DeGroot 1966), (Chase and Simon
1973). Also, both connectionist models and humans detect correlations between actions and their
outcomes, and adapt in response. In addition, connectionist systems allow defining learning pro-
cedures that permit the system to adapt to unforeseen stimuli (input). They also exhibit a gradual
adaptive ”forgetting” behavior when unused connections gradually lose their influence on decision-
making (output). Finally, connectionist networks learn via repeated training, which facilitates the
study of the process of learning. The ability to study errors, and corrective adaptations to complex
intellectual problems, opens up new and exciting avenues investigating how artificial and biological
systems become experts.

There have been some noteworthy successes using ANNs to model human learning. Areas
in which connectionist models have already expanded our understanding of cognition include the
development of infant vision and perception (Bednar and Miikkulainen 2003), (Chaput and Co-
hen 2001) language acquisition and comprehension (Elman 1991a), (Miikkulainen 1997), (Rumel-
hart and McLelland 1987), musical analysis (Todd, 91, as cited in Chen and Miikkulainen (2001);
and (Rumelhart 1998)), and memory (Alvarez and Squire 1994), (McClelland, McNaughton, and
O’Reilly 1995). A particularly interesting early connectionist model of learning was presented
by Viscuso, Anderson, and Spoehr (1989). Their ANN simulated qualitative reasoning while doing
multiplication. This study is intriguing for many reasons. First, it successfully modeled how experts
estimate correct answers. Second, by analyzing the type and frequency of errors during learning,
they showed similarities between their model and humans. Third, they successfully modeled asso-
ciation errors and showed that related data caused confusion, as it does with humans. The types of
association errors they saw varied depending upon the order in which problems were learned and
how much they were practiced. In summarizing their model, Viscuso et al. correctly pointed out
that the most important contribution of their model was the ability to mimic the manner in which
experts rely not so much on formal logic and rules but on their ”sense” of what is correct. Since
this study, significant advances have been made in technology and understanding of cognition, and
it should be possible to give these results another look and to follow them up with new studies.

Another interesting early ANN system learned to perform arbitrarily long addition problems
(Cottrell and Tsung 1993). Their model was shown to learn the implicit underlying rule of addi-
tion. Cottrell and Tsung also analyzed the internal states of the model at different stages of learn-
ing and plotted the principal components of the results. They found that the network state space
distinguished between actions needed to do addition: CARRY, WRITE, NEXT. Although giving
precedence to the existence of rules in problem-solving, this system showed the flexibility of ANNs
for cognitive modeling: the network learned an important concept that it had not been explicitly
trained on.

These studies show the wide range of cognitive tasks that can be successfully modeled with
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ANNs. They also show the ability of ANNs to successfully model complex learning. In the next
section I will explain why another good domain to study with an ANN is calculus learning.

2.3 Why Calculus Learning is a Good Domain to Study

This section provides the context for understanding why calculus is a good domain to use if we
want to study the acquisition of intellectual expertise. Calculus, at its most fundamental level, is
based upon abstract cognitive concepts. As a result, understanding how people best learn calculus
requires understanding the mind. Part of the current educational debates over mathematics and
science education, which I discuss in Section 2.3.1, rest upon the reality that we do not understand
enough about how the brain produces cognition and conceptual understanding. As I mentioned
earlier, neuroscience has made great strides recently, and we know more about the brain than ever
before. But neuroscience is no closer to resolving open questions about academic learning than are
the educational studies discussed in this section. As a result, we have an opportunity and a need for
interdisciplinary researchers to step in and bridge the gap (Bruer 1997), (Selden and Seldon 1997).
So Section 2.3.2 lays the groundwork for my cognitive study of calculus learning by discussing why
calculus is so hard to learn. Section 2.3.3 reviews previous research in calculus education.

2.3.1 National Concerns with Mathematics Education

In the last decade there has been an increasingly wide-spread national concern with properly edu-
cating citizens for the new technological age. A common view is that there is a mismatch between
the current educational system and economic need. (For a detailed analysis of this argument, see
Marshall and Tucker (1992)). Most would also agree with findings that children and adults do not
use strategies necessary to enhance learning (Garner 1990). There is widespread concern among
academics that college students do not have critical thinking and generic problem solving skills.
Math and science achievement have been at the center of these concerns (for a few examples see
(Abudiab 2001), (Medley 2000), and (Moore and Wick 1994)). Large-scale international studies
have compared science and mathematics education in the United States with other countries (Atkin
1998), (Stigler and Hiebert 1999). The results show that successful learning is often tied to cultural
systems: it isn’t possible isolate pieces and transfer them to different environments.

Far from resolving disagreement about which instructional strategies to use, studies such as
these have increased the debates. Some people agree that educational change is overdue, but feel
that proposed reforms do not go far enough to address individual and cultural needs. Reformers
often want education to focus more on empowering the individual learner, and incorporating social
interaction into the learning process. Some of these reformers directly challenge institutional power
structures as well. For an example, see (Eisenhart, Finkel, and Marion 1996). On the other hand,
there are those who believe that reformers are on the wrong track altogether and that a positivist
approach to instruction will produce the most intellectually equipped students. Positivism is a doc-
trine that contends that the only valid basis for human knowledge is what can be directly observed -
educators who are positivists often center their teaching and learning around the Scientific Method.
For an example of the Positivist argument for education, see (Cromer 1997).

Mathematics is central to the controversies because it is required for success in so many careers.
Bruner has even suggested that learning mathematics may be viewed as a microcosm of all intel-
lectual development (Bruner and Kenney 1965). In college, calculus is a gateway course; in order
to pursue most studies in the natural sciences and engineering, students must do well in calculus.
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Unfortunately, students often have problems with basic calculus concepts. Why is calculus so dif-
ficult to learn in the first place? The answer to this question is elusive, but it is important because
it impacts decisions about instructional strategy. The next two sections will explore why calculus is
difficult to learn.

2.3.2 Calculus Integration as an Ill-Structured Domain

Calculus is difficult to learn because, as with advanced mathematics in general, it belongs to an ill-
structured domain. Ill-structured domains have the following two properties: concepts and cases are
complex, and not all cases in a concept share the same surface-level structure (Duffy and Jonassen
1992). These properties cause problems for learners who, through well-intentioned attempts to
simplify, are taught isolated or superficial concepts. These learners are unable to master com-
plex concepts and transfer knowledge (Duffy and Jonassen 1992). The difficulty appears when the
learner encounters advanced material, and discovers that cases nominally of the same type in fact
have flexible category boundaries. When these results are viewed along with the evidence confirm-
ing that novice learners in general are misled by ambiguity (literature reviewed in (Glaser 1987)),
it becomes especially important for delivery strategies not to reinforce simplistic conceptions. If
students do not encounter ambiguity until after they have formed problem-solving habits, they will
be ill-equipped to handle tasks requiring fine discrimination.

In order to discover what types of problems calculus students are having at my institution, I per-
formed structured interviews with members of the UT mathematics faculty and teaching assistants
(TAs) in the fall of 2001. A primary purpose of the interviews was to discover faculty/TA percep-
tions of a significant student learning problem. Faculty were asked about how students approached
calculus integration problems and where they had trouble, and also how they personally approached
integration problems. The interviews were part of a study to gain insight into the complex rela-
tionship between expert understanding (in this case faculty and TAs) of their own problem-solving
process, how they viewed the novices they taught, and the teaching strategies they chose. The in-
terview results fit well with the psychological literature on expert/novice behavior. Novice learners
(in this case UT students) are often unable to select the correct integration solution strategy. This
fundamental problem arises before they even have a chance to exhibit computational difficulties and
prevents many from reaching timely, correct solutions. Conversely, the experts claimed an ability
to ”just see” the correct strategy, yet were unable to articulate how they knew. Probing revealed
that although there are ”rules of thumb” to assist in strategy selection, they are not comprehensive
and do not cover many common scenarios. Experts instead pointed to general patterns and cate-
gorization that they have learned to recognize via extensive practice. As would be expected in an
ill-structured domain, there is often more than one way to solve an integration problem. The faculty
and TAs in my interviews acknowledged this and said that they intuitively recognized each time,
which was the best strategy. For example, Integration by Parts can be used to solve the same prob-
lems as Usubstitution, but often more easily and efficiently. Also, both Integration by Parts and
Usubstitution can be used to solve problems easily solved using Simple Integration. Learners need
to acquire this advanced understanding and develop the intuitive ability to just look at a problem
and choose the most efficient method. Under pressure, such as on an exam, there is no time to guess
and backtrack. If students have only a superficial understanding of problem types, they will likely
assume that categories are disjoint. This will lead them to select strategies based upon inappropriate
cues (such as surface-level features, or order of placement on an examination), which are likely to
fail. Other results supporting my interview data can be found in a study by Burton (1999).
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2.3.3 Previous Research in Calculus Learning

Numerous studies in the last two decades have tried, with some success, to gain greater insight
into problems learning calculus. Ferrini-Mundy, and Graham surveyed studies from the 1980s and
early 1990s (Ferrini-Mundy and Graham 1994), many of which focus on student mis-conceptions of
isolated mathematical concepts such as function, limit and derivative. Ferrini-Mundy and Graham
also present original results focusing on students receiving ”traditional” instruction and assessment,
where traditional is defined as being a large lecture format, without use of technological aids. They
concluded, for example, that students show powerful tendencies to call upon familiar examples
and frequently-used patterns; traditional means of academic assessment mask rather than reveal
the nature of student understanding; traditional language used to explain concepts to students may
contribute to their having poor understanding.

Other studies also support the conclusion that traditional teaching methods hinder learning
calculus. Selden, Selden, and Mason, conclude that isolated, trivial problems, the norm in many
classrooms, inhibit students from acquiring the ability to generalize calculus problem-solving skills
(Selden, Selden, and Mason 1994). Similar results are reported by Norman and Prichard (1994).
They demonstrate that many learners can not interpret the structure of a problem beyond surface-
level symbols. They show that novices have inaccurate intuitions about problems which lead them
to attempt incorrect solution strategies (Norman and Prichard 1994). Because they can not see be-
yond high-level features, they can not develop correct intuitions. On the other hand, successful
problem solvers categorize math problems based upon underlying structural similarities and fun-
damental principles (Silver 1979), (Schoenfeld and Herrmann 1982). These categories are often
grouped based upon solution modes, which the experts use to generate a forward working strategy
(Owen and Sweller 1989).

Other intriguing data about calculus teaching and learning comes from a recent international
study examining the form and style of mathematics and science textbooks. Although the researchers
focused on pre-college texts, calculus textbooks were included. This study first pointed to studies
showing the substantial impact of the content and structure of textbooks on teacher’s instructional
decision-making. They then presented original results showing that textbooks in the United States
were uniformly much larger and longer than elsewhere; the textbooks covered far more material,
both on a given page and throughout the text, and this material was covered in far less depth than
the textbooks from other countries. The researchers went so far as to say that “focus... is not
a characteristic of US [math] textbooks overall” (Valverde, Bianchi, Wolfe, Schmidt, W.H., and
Hwang 2002). The implication of their results is that these textbooks support the surface level
learning that college level calculus researchers have been reporting in their studies.

Other researchers have focused on the role of practice. For example, Resnick and Ford claim that
psychological studies have ignored the interaction between instructional methods and understanding
(Resnick and Ford 1981). They call for finding out: what regularities are most likely to be noticed,
and how does the form in which the initial procedure is taught affect what is noticed? Are there ways
of managing how learners practice, to enhance the likelihood that they invent shortcut procedures
(their term for what I refer to as intuitive recognition).

All of the studies discussed in this section help to clarify an important research goal: to find the
best way(s) to present material so that students will notice subtle interrelationships, and incorporate
this information into their problem-solving strategies. One of the first instructional decisions is what
order to present the material in, and how to move from one concept to the next. There are many
possible orderings of material, and a computational model can be used to explore them. My model,
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described in the next section, contributes to acheiving this research goal.

3 Description of the Model

In this section I present a description of the architecture of my ANN model, including how the
input data was selected and encoded. The information in this section applies to all three experiment
types that I have completed. In sections 3.1 & 3.2 I will describe the architecture of my ANN and
describe how how it works. In section 3.3 I will describe the rationale I used to choose the calculus
integration examples and to divide them into training and test sets. In section 3.4 I will explain the
encoding system I used to convert the calculus problems into a machine readable input vector.

3.1 Architecture and Function of an ANN

My model is an artificial neural network utilizing the backpropagation algorithm created using the
LENS network simulator (Rohde v2.3.1). See Figure 1 for a diagram of a typical backpropagation
network. Such a network is made up of three layers: input nodes, hidden nodes, and output nodes.
In Figure 1 there are 6 input nodes, 3 hidden nodes and 3 output nodes. This is a fully connected
network, which means that every input node is connected to every hidden node, and every hidden
node is in turn connected to every output node. All of the connections between nodes are weighted
(not shown). My model is an enlarged version of this structure, with 55 input nodes and 20 hidden
nodes. I will refer to it as a 55-20-3 ANN.

Hidden
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Output Nodes

Input Nodes

Figure 1: Structure of an Artificial Neural Network.

Although it is beyond the scope of this document to fully explain the operation of an ANN,
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it is helpful to include a general description. This description applies to the model used in my
experiments. (For a full description of the ANN backpropagation algorithm, there are many sources,
such as Bishop (1995), Haykin (1999)).

When ANNs are used for categorization problems, there are two primary operations: training
and test. During training, the network is given examples of data one at a time through the input layer.
It is asked to decide what output category each problem belongs to. Each node in the output layer
represents a category. These training problems have known answers, which are also provided to the
network. Without looking at the answer, the network analyzes the problem and makes a guess. The
guess is announced by a signal spread across the output nodes. The strength of the signal on each
output node represents the strength of the guess (i.e. the aposterior probability) that that particular
category is the answer.

The way the input, analysis and guess takes place is commonly spoken of as a signal “prop-
agating forward”: from input nodes, through the hidden nodes, to the output nodes. The weights
connecting all the nodes influence which output node will receive the strongest signal(s), and be-
come “the guess”. At the output layer, an error value is calculated, which represents how close or
far the guess was from the correct answer. This error value signal is then “propagated backwards”
(hence the name “backpropagation”) from the output layer nodes, through the hidden nodes. Along
the way, the weights connecting the various nodes are adjusted using an error-correction rule. The
hidden nodes together represent the current state of conceptual development of the network. This
understanding is spread across the individual nodes; as with human neurons there is no identifi-
able piece of information contained in any one node. The hidden nodes acquire their values over
time, as the network is trained on a given problem. They extract features from the input problems
during training. Because there are usually fewer hidden nodes than input nodes, the hidden nodes
are forced to create a condensed, complex description of the most salient information that passes
through. Thus conceptual understanding, as represented by the hidden nodes, grows and changes
with new input.

When training is finished (the timing depends upon the research goals), no more changes are
made to the network. During the test phase, the network is shown new problems, which may or may
not have known solutions. The network is then “tested” to see how well it performs.

3.2 The Role of the Different Nodes

The nodes in an ANN fulfill different functions. Typically, the input nodes are used to feed data
into the network, with each node containing one piece of a larger data item. In my model, an
item of data is one calculus integration problem. Each of the 55 input nodes indicate the presence
or absence of a visible feature of the integration problem. (In the next section I will describe in
detail how these features were determined and coded.) My model has three output nodes, each of
which represents one of the acceptable calculus integration solution strategies: Simple Integration,
Usubstitution, Integration by Parts. The output nodes in my network report not only the guessed
answer for each problem, but how confident the network is in that choice. Each time the network
guesses at an answer, it reports values across all three output nodes. The values in the output nodes
are normalized so that they sum to 1.0 (100%). The node with the highest value is the preferred
guess. For example, if the network reports: 100% 0% 0%, then it is absolutely sure that the problem
belongs in the first category. On the other hand, if the network reports: 12%, 85%, 3%, then it is
quite confident in the second category, considers the first category possible but unlikely, and the
third category extremely unlikely (but not absolutely impossible). If the network reports: 40%,
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35%, 25%, it is confused.

3.3 Selection and Design of Training and Test Data

Calculus integration is a complex domain, so care needed to be taken in deciding which problem
types to model. It was not computationally possible, or even desirable, to model all calculus integra-
tion problems. My goal was to select a subset of problems that would reflect the domain complexity
and provide generalizable results. Therefore, in order to balance computational considerations with
educational justification, I made the following choices.

There are three types of input data: Simple integration problems (Simple), Usubstitution integra-
tion problems (Usub), and Integration by Parts integration problems (Parts). These are the solution
strategies most commonly taught to introductory calculus students. A core set of 100 problems
came from a variety of college level calculus textbooks (Lang 1986), (Silverman 1985), (Stewart
1995); I generated additional problems using an automated procedure which rearranged variables
and operators into legal orderings with the same structure as the core set. Each generated problem
was manually checked to make sure that it had a valid syntax before it was included in the data
set. All together 957 problem examples were obtained this way. These examples were randomly di-
vided into 10 or more experimental pairings of test and training sets, ensuring that there were never
any problems in the test set that were also part of the training set. The reason for multiple pair-
ings is to be able to look for generalizable, statistically reliable patterns of behavior over multiple
experimental runs.

Duplicate problems were allowed in the test set because textbooks frequently re-introduce prob-
lems with only cosmetic changes, e.g. by altering the value of a constant. Similarly, permutations
of multiplication terms were allowed (such as a*b and b*a). The following additional constraints
were placed on the input set: all binary arithmetic operators (addition, subtraction, multiplication
and division) were included, as was the unary operator for exponentiation (ˆ, e(x)). Trigonometric
operators and the natural logarithm (ln(x)) were also included. All these operators allowed the data
set to contain a large fraction of possible integration problems.

Some experiments required training sets containing mixes of problem types. The mix of prob-
lems in Simple-Usub (SU) training sets was approximately 2:3. The mix of problems in Simple-
Usub-Parts (SUP) training sets was approximately 2:3:3. This division corresponds to the greater
emphasis that the original textbooks placed upon Usub and Parts problems.

Some of the test sets (which in the experiments are sometimes referred to as ”midterms”) also
consisted of mixed problem types, either SU or SUP. In these cases, the test sets were designed
such that the more advanced problem type made up proportionally more of the examples in the
set. This decision reflects a common instructional practice of including a greater percentage of
more recent/complex problems on comprehensive examinations. For this reason also, the exact
percentages were not held rigid, but allowed to vary from one experimental run to the next. Test set
sizes never exceeded 20% of training set size.

3.4 Data Encoding

Data input to the network is represented using feature coding. Feature coding is a logical choice,
given that both novices and experts use the features of a problem to determine which approach to use
(Chi et al. 1981). Bishop (1995) discussed techniques for determining which features to include in
an input vector, emphasizing that it is important to choose the features carefully. Features influence
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the outcome of analysis with a computational model as much as they do with a human. For my
experiments, if I were to decide which surface level features of the integration problems were most
important, the network would be biased towards those elements.

Therefore I provided the network with the same features (operators and operands) that a human
learner would see, and I gave equal representation to each one. Each integration problem is encoded
with one input node per unary or binary operator, and a flag indicates whether the operator is actually
present or not. This is known as binary value unit encoding, which is easier to learn than other
encodings (Bishop 1995). At each location where a variable or a constant can legally occur, two
units are used: one encodes whether there is a variable (e.g. � , � ...) in that location, and the other
whether there is a hard-coded constant (e.g. � , � , � ...). Integration problems are allowed to have
either a constant or a lone variable, to which an operator could be applied, but not both. For example,
� or � is legal, but � � is not, because � � it is an implied multiplication represented with an operator.
Folding all variables into one node and all constants into another is a way of implementing prior
knowledge. The values of the constants and variables do not affect the solution strategy. So neither
the learner nor the network will spend time discriminating between them.

To create the input vectors for each integration problem, the input file containing the data set is
passed through a script that converts each problem into postfix form. Each integration problem is
restricted to a maximum of four terms. Each expression in a problem is represented by two terms:
the element itself and any unary operator that is applied to it. For example: ���	� � is represented by
the tuple � , �
��� . A simple number or variable in an expression is represented as the tuple � , NONE.
The postfix terms are then passed through another script that maps the presence or absence of a
given operator/operand to its location in the input vector. Short problems are padded with blanks.
Thus the final result is a 55 unit vector, containing a series of 0s and 1s indicating which features
comprise the calculus integration problem.

Summary of the data contained in the vector:

� Four 2-unit terms representing constants and variables
Possible values: presence of a constant; presence of a variable such as � , � ; no constant or
variable present

� Four 8-unit Unary Operators
Possible values:
Trigonometric operators �
����

������
��
����

������

������

���
��

��� , exponentiation ��� ���

� Three 5-unit Binary Operators
Possible values: multiplication, division, exponentiation ˆ, addition, subtraction

For example, the problem

�! #"%$�&'� ���)( &�*,+-�.� �  0/1+-� ���

is coded as: 01 00000000 10 01000000 10 10000000 10 00000010 00010 00001 00010.
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In more detail,

01 : No Variable; Constant (was � )
00000000 : NONE (no unary operator for the constant)
10 : Variable (was the first � ); No Constant
01000000 : cos (apply to the variable)
10 : Variable (was � ); No Constant
10000000 : sin (apply to the variable)
10 : Variable (was the second � ); No Constant
00000010 : ln (apply to the variable)
00010 : +
00001 : -
00010 : +

This coding scheme permits encoding hundreds (957) of Simple, Usub and Parts integration
problems. The large number of problems should make the results generalizable. This coding scheme
preserves the original surface level features. Therefore, the ANN is not biased by my choice of
which features are important. The network sees the same visual features that a human learner sees
and should be able to discover which features contribute most to conceptual understanding.

4 Experiments

This section explains the two hypotheses that were tested in the completed experiments. In sec-
tion 4.1 the hypotheses are broken down into sub-points. Each sub-point describes a specific phe-
nomenon that is part of the hypothesis, and allows detailed examination and precise testing of the
hypothesis. Section 4.2 describes the experimental criteria that applied to both Hypotheses 1 and 2.
This section provides the background information needed to understand descriptions of the individ-
ual experiments in Section 5.

4.1 Experimental Hypotheses

In the hypothesis descriptions below, the term “problem” is short for “calculus integration prob-
lem”. A Problem Type is a category of solution strategy, i.e. Simple, Usub or Parts. “Long-term
retention of material” is defined as the ability to remember a concept after other concepts have also
been introduced.

Hypothesis 1: An artificial neural network can be used as a model to investigate how people learn
under different training scenarios.

Hypothesis 1 validates the model; its sub-points are distilled from the literature on human
learning. (Bransford et al. 2000,Chap. 3), (Duffy and Jonassen 1992,Chap 5), (Resnick and Ford
1981,Chap. 2). If the model exhibits these behaviors, we consider it a good model of human learn-
ing.

(1.1) During training, if problems that belong to one concept are introduced along with prob-
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lems that belong to other concepts, error rates on tests are less than when concepts are introduced
separately from one another.

(1.2) When concepts are reinforced inconsistently, only the most recently introduced concept is
remembered.

(1.3) ”Cramming”, a brief intense review of all previously studied material done immediately
prior to taking an exam, does not improve learning.

(1.4) Problem types that are related to one another are learned faster than unrelated problem
types.

(1.5) Problem types that are related to one another become confused on tests, more than unre-
lated problem types.

Note that (1.5) is not inconsistent with (1.4). During learning, the network can draw upon prior
exposure to features, and not start learning from scratch. Some solution categories will be elimi-
nated very quickly. However, these same similarities between categories will cause some confusion
on tests. How problems are related to one another will depend upon whether the learner is a novice
or an expert. As cited earlier in this document, novice learners categorize based upon surface fea-
tures, whereas experts categorize based upon underlying structural similarity. Therefore, the novice
learners should confuse problems based upon clearly identifiable features. The expert learner should
believe that a different set of problems are related to one another than the novice.

Hypothesis 2: Different delivery methods result in different overall performance.

After the first hypothesis is experimentally verified, Hypothesis 2 allows drawing practical con-
clusions from the model. This hypothesis focuses on how delivery methods help or hinder the
learning of expert knowledge. Three delivery methods will be tested: two of them are inspired by
existing methods of teaching students, and the third is inspired by machine learning research. (I will
explain these methods in Sections 5, 6, and 7). This hypothesis is also broken down into sub-points.

(2.1) Delivery methods that use drill and test of separate problem types, will result in poor long-
term retention of material.

(2.2) Delivery methods that force comparison of different problem types will result in longer-
term retention of material than delivery methods that keep problem types separate from one another.

(2.3) Delivery methods that introduce new, increasingly complex, concepts along with rein-
forcement of old concepts, will result in the best long-term retention of material.

Note that (2.2) and (2.3) are related, but not the same. Sub-point (2.2) claims that any delivery
method that forces comparisons would result in better retention than drill and test. Sub-point (2.3)
suggests another such method, and claims that it would produce the best retention of all.
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The experiments for testing Hypotheses 1 and 2 have been completed. In the next sections I will
describe how these experiments were conducted.

4.2 Training and Test Criteria for all Experiment Types

This section describes the training and test criteria that applies to all of the completed experiments.
There were three experimental scenarios, designed to test various aspects of Hypotheses 1 and 2.
The first experiment type is Drill and Test (Section 5), the second is Fully Integrated (Section 6),
and the third is Incremental Learning (Section 7).

As described in the previous section, the calculus integration problems were divided into paired
training and test sets. For each experimental run, the training set was input to the network, using the
55 unit input vector, one problem at a time, in random order. The network was given each problem
in a set once before any were repeated; one such round is called an ”epoch”. Each experimental
run began with a new set of random weights between the nodes of the neural network. The interval
for the random weight initialization was [-0.1, 0.1]. The learning rate for all experiments was .2
and the momentum was .9 . Each weight change was bounded to prevent it from becoming larger
than the learning rate early in training. I used the Divergence error function, calculated by summing
� � ��� � ��� $ � over all the output nodes and the input examples, where

�
=target vector, $ =output vector.

In each experiment, a network was trained on some combination of problem examples for a
fixed amount of time. Time was measured in epochs. Because the focus of these experiments was
upon performance, I experimented with different run times, searching for the best possible results in
each experiment type. The best results for each scenario are reported, which means that the number
of epochs run for each one makes no difference, as described in sections 5-7. In general, training
lasted until training error either reached zero or plateaued somewhere before reaching zero.

Validation sets are often used in machine learning experiments to help identify when to cease
training in order to achieve the best results. Validation does not apply to these experiments however.
I was more interested in observing individual variations within experiment types, good or bad.
Humans vary in their performance abilities, and in a formal educational environment such as a
university, fast and slow learners are given the same amount of time to learn.

Each test item was an integration problem. The three output units in the network corresponded
to the possible solution strategies: Simple Integration, Usubstitution, and Integration by Parts. There
was always only one correct answer to a problem. This answer, called the ”Best”, was the answer
suggested in a textbook, or by a calculus expert (faculty, TA, advanced student). For each test
problem the network reported, via a percentage, how confident it was that the solution strategy
was either Simple, Usub or Parts. If the confidence level for all solutions was below 80%, the
problem was considered having ”stumped” the network. The value 80% was chosen as a very rough
approximation of ”above average”, much in the same way a standard grading scale of A-F often
considers a B, in the 80+ range, to be attainable only by above average comprehension.

As I described earlier, the coded examples were divided into 10 or more experimental pairings
of training-test data. Each of these pairings was executed at least ten times, randomly resetting
the initial network weights each time. Therefore, each experimental scenario was executed at least
100 times. This repetition was done to look for natural variations in network learning of the same
material, and to be able to test for statistically reliable differences. I performed t-tests upon the test
scores, to look for statistically significant differences in performance between experiment types. In
the following section I will describe in detail the first of the three experiment types, and the results
that it produced.
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5 Drill and Test Experiments

The experiments reported in this section tested Hypothesis 1.2-1.5 (see Section 4.1) and were in-
spired by a classic approach to presenting material to learners. Classic drill and test works as fol-
lows: methods of solving problems are introduced one at a time, for a fixed amount of time. Each
successive problem type is more complex than the previous types. At the end of each method, the
learner takes a midterm test. At the end of the time alloted for studying all concepts, there is a ”final
exam” which includes all of the problem types. I expected to see good results on each midterm, and
catastrophic forgetting on the final exam. I held this expectation because I attempted to model the
poor retention exhibited by students who cram-memorize several related topics in succession, and
later only retain well the most recent. So the hypothesis here was that the network/student would
initially appear to learn each technique but subsequently be unable to retrieve all but the last one.
The others would have been in short term memory and thus flushed out. The purpose of Hypothesis
1 was to validate the model and this goal was accomplished by the experiments.

5.1 Details of Training and Testing Regimen for Drill and Test Experiments

The network was trained first to identify Simple problems for 15 epochs, followed by Usub problems
for 100 epochs and then Parts problems for 100 epochs. There was no overlap between problem
types. Simple problems were trained for 15 epochs because this number always allowed the training
error to reach 0%. After each training period, the network learner was tested with a single subject
midterm. For example, after the end of training on Simple problems, the network took a test con-
sisting of new Simple problems. After completing training on Parts problems, there was a Parts
midterm followed by a comprehensive final exam. This final exam contained a mix of new Simple,
Usub and Parts problems (SUP). All problems were designed as described in Section 3.

I also conducted 100 experiments with a slight modification to adjust the model to behave as
if the learner undertakes a brief, short, comprehensive ”cram” session after the Parts midterm, and
prior to the final exam. A cram session consisted of 30% of the previously studied problems, evenly
distributed. A cram session lasted 22 epochs. Twenty-two epochs was 10% of the previous training
time. I chose this time period to mimic a 2-day (10 hours total) crammed study session. Ten hours
is approximately 10% of the 112 hours theoretically spent initially learning (16 week semester
class that meets 5 days/week for one hour/day and requires 2 hours per week out-of-class study:
7x16=112 hours).

I conducted some experiments which shortened and lengthened the training segments. There
was no effect on the results if training times were lengthened. There was also no effect on the
results if training times were shortened, as long as those experiments that did not get stuck on a
plateau were allowed to reach 0% (see next two sections). If they were not, performance was hurt.
As with all the experimental scenarios, I report here the best results that were achieved.

5.2 Training Results for Drill and Test Experiments

Figure 2 shows the training error for the 100 experiments that included a cram session. In all Drill
and Test experiments, the training error for the Simple problems showed an immediate rapid drop-
off of error. The x-axis along the bottom of the figure shows what type of problem was being trained,
and the x-axis along the top of the figure shows the epoch transition points (15, 115, 215). The error
values along the y-axis are the Divergence Error (section 4.2). Because the Simple training part of
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the curve is so small compared to the rest of the curve, I have also included a table below. Table 1
shows the average error during the 15 epochs of Simple training. The reader can see clearly in this
table how rapidly the error values dropped and the network appeared to learn. This result seems
logical: because Simple integration was the first concept seen by the network, and there were no
competing problem types, it was easy for the network learner to acquire the desired output response.
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Figure 2: Drill and Test Learning - Training Error

As expected, the switch to Usub problems (epoch 15) produced an immediate jump to a very
high error rate. The network learner had to ”shift gears” and adjust to a different concept. Even
after the initial jump, the training error continued to climb for a short while. During this phase
the network attempted unsuccessfully to fit new problems into its previously developed framework.
Eventually, for most learners (83%), the network began to recognize and assimilate the new type of
problem and there was a rapid drop in training error. Figure 2 shows how different learners took
different amounts of time to follow this pattern of behavior. At the end of the Usub training some
learners were still having high training error rates.

A similar bi-modal distribution of training error took place with Parts problems (epoch 115):
an initial jump, followed for most learners with a sudden rapid reduction. However, those learners
who had finished the Usub training with low errors, had lower and shorter periods of training error
when Parts problems were introduced. On the other hand, those learners who had not fully grasped
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Epoch Average Training Error
1 202.6267
2 127.4555
3 54.6750
4 11.7953
5 1.3623
6 0.0967
7 0.00587
8 0.00041
9 0.000033

10 0.00000
11 0.00000
12 0.00000
13 0.00000
14 0.00000
15 0.00000

Table 1: Average Training Error During Simple Training

the Usub concept had higher and longer periods of training error when training switched to Parts
problems.

The experiments without a cram session took the comprehensive final exam at the end of the
Parts training (epoch 215). The experiments with a cram study session took the comprehensive
exam after cramming. The cram session appeared to initially hurt those learners who were doing
well on Parts problems alone: as can be seen, their training error rates shot up. On the other hand,
the cram session appeared to help those learners who had been having the most trouble, as their
training error rates dropped sharply. However, their training error rates did not drop as low as those
of their counterparts who had had lower rates all along.

Looking at the training error for the whole experiment, most of the Drill and Test learners
appeared able to rapidly and completely learn each new concept. Some Drill and Test learners
however, appeared unable to learn the concepts at all. A few learners appeared able to learn, but
slowly. It is interesting to note that the more trouble a learner had early in training, the more trouble
they had later in training. These training results set up expectations of strong success on the midterm
and comprehensive exams. In the next section, I report the results of these tests.

5.3 Testing Results for Drill and Test Experiments

Results for all Drill and Test experiments were virtually indistinguishable from one another. Simple
midterms were always 100% successful, reflecting the reported 0% training error at the end of sec-
tion training. The Usub and Parts midterms had a bi-modal distribution that paralleled the training
error curves. The majority of learners, those whose error rates dropped to zero, were very success-
ful on their midterms. Scores were often 100%, although occasionally the network made mistakes.
Because these mistakes were rare, I can not draw any conclusions about them. Conversely, those
learners who had high near-flat training error curves, scored 0% on their Usub and Parts midterms.
These learners continued to select Simple as their answer to all test questions.

The opportunity to include a final cram session had no discernible effect on the comprehensive
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exam (SUP) for either group of learners. The poorer learners scored on average 17.29% (standard
deviation 4.95), continuing to always choose Simple as the answer. The high score for this group
was 26.92%. The more successful group scored on average 41.65% (standard deviation 6.35),
with a high score of 54.55%. With little exception, both sets of learners thought that all exam
problems were Parts problems; their scores were the same as the percentage of Parts problems on
their particular exams. They had lost the ability, apparently learned early on, to identify Simple and
Usub. As predicted, the types of errors made on the exam reflected catastrophic forgetting of all but
the most recently studied material. The difference in the average scores of the poor and successful
learners was statistically significant, as evaluated with a t-test (

��� � ����� ����� 

	�� � � ����
���� 
����
� � ��� ( ��� ).

All network learners exhibited high self-confidence, even when they were wrong. On the final
exam, as on the midterms, the network did not have trouble choosing answers; it reported 100%
confidence in its choices virtually all of the time.

5.4 Discussion of Drill and Test Experiments

The Drill and Test Experiments successfully tested a significant portion of Hypotheses 1 and 2.
Hypothesis 2.1, Delivery methods that use drill and test of separate problem types, will result in
poor long-term retention of material, were supported. Hypotheses 1.2 and 1.3, When concepts are
reinforced inconsistently, only the most recently introduced concept is remembered, and that ”Cram-
ming” does not improve learning, were supported. Hypothesis 1.5, Problem types that are related
to one another become confused on tests, more than unrelated problem types, was not supported in
these experiments. The remainder of Hypothesis 2, and Hypothesis 1.1, are tested in Sections 6 and
7.

Hypothesis 1.4, Problems types that are related to one another are learned faster than unrelated
problem types, was conditionally supported by the results. As was mentioned above, most network
learners learned Parts problems far more easily than Usub problems. Because Parts problems are
generally acknowledged to be more complex than Usub problems, I expected that they would be
harder to recognize than Usub problems. Apparently, once the learner had figured out how to
recognize Usub problems, it was easier to learn to recognize Parts problems. Those learners who had
not managed to recognize Usub problems however, had even greater difficulty switching to Parts.
Because the ability to recognize Usub problems affected the ability to recognize Parts problems,
there is an implied relationship between Usub and Parts problems. What this relationship is, can
not be determined without performing an analysis of the hidden layers. This analysis is part of my
Proposed Work. That is why Hypothesis 1.4 can only be conditionally supported at this time.

Additional experiments are needed to find out more about this relationship. One question that
needs to be asked is: do human learners perceive a similarity between Usub and Parts problems?
It is very difficult to obtain this answer using traditional Drill and Test delivery methods. With
humans, as in this model simulation, exams may not provide deep enough information. Subtle
clues, in this case reports of error during training, need to be followed up with analysis of conceptual
development. This analysis is part of my Proposed Work (Section 8.2).
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6 Fully Integrated Experiments

These experiments tested Hypotheses 1.1 and 2.2 (see Section 4.1) and were inspired by the immer-
sion experiences popular in foreign language instruction. In a full immersion situation, the learner
is placed in an environment where they are completely surrounded by new, complex stimuli (for
example: moving to a country where no one speaks English). Thus she or he has no choice but to
sort out the most relevant language features in order to make effective communication decisions.
Unfortunately, developing practical immersion experiments using humans is time consuming and
costly. Very few, if any, controlled experiments have been done comparing human language immer-
sion learning with classroom learning (for a detailed discussion and citations see (Spolsky 1989)).
However, my computational model is ideal for an initial experiment with immersion learning. The
cognitive mechanisms that enable a foreign language student to sort out important grammatical
features should not be that different from those cognitive mechanisms that sort out features of math-
ematical grammar. Therefore, in these experiments I expected to see long term retention of concepts
that was far better than in the Drill and Test experiments.

6.1 Details of Training and Testing Regimen for Fully Integrated Experiments

The network was trained on all of the problem types (Simple, Usub, Parts) simultaneously. This
means that a mix of Simple, Usub and Parts problems were input to the network in random order.
At the end of each epoch (one pass through all the problems), the problems were shown again in
a new random order. Training took place for 215 epochs; this is the same number of epochs as
were run in the Drill and Test experiments without cramming. By 215 epochs, the training error had
reached a plateau.

All of the exams were SUP (i.e. cumulative) exams, to reflect the mixed nature of the training.
Initially, I gave midterms at the same epochs as in the Drill and Test experiments, but initial results
showed such a marked difference in behavior (compared to Drill and Test) that I decided to give
midterms after every epoch in order to more closely monitor progress of the network learner.

I also ran some experiments that extended the training time beyond 215 epochs. Neither training
error nor test scores were affected.

6.2 Training Results for Fully Integrated Experiments

Training behavior was highly consistent for all Fully Integrated experiments (see Figure 3). The
training type is labeled across the lower x-axis. In order to be able to compare these results with Drill
and Test more easily, I have also labeled epochs 15, 115, and 215 along top and bottom x-axes. Also
as in Figure 2, the y-axis contains values for the Divergence training error. As can be seen in Figure
3, the training error began with a jump in error, and after a brief fluctuation, dropped dramatically
and smoothly. Training error reached a plateau, well above 0, although there continued to be minor
error fluctuations. In contrast to the Drill and Test training error, Fully Integrated training error was
highly unimodal, and low.

6.3 Testing Results for Fully Integrated Experiments

The graph of test scores for Fully Integrated experiments looks very much like an inverted graph
of the training error (see Figure 4). In order to show the results more clearly, this figure displays
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Figure 3: Fully Integrated Learning - Training Error

a fully representative subset of the 100 experimental runs. Test scores are on the y-axis, and the
test type (SUP) is shown along the x-axis, along with the epochs seen on previous figures. As can
be seen, the learners initially failed the midterms miserably, but then their scores rapidly increased,
and finally plateaued. Scores fluctuated as they rose, but eventually smoothed out. The average final
score was 76.99%, and the standard deviation was 7.94 . The best score was 80.76% .

The types of errors made on tests, and confidence levels for all answers, have not been fully
analyzed yet. This data has been collected, and I propose to complete the analysis as part of my
dissertation (see Section 8 - Proposed Work)

6.4 Discussion of Fully Integrated Experiments

The Fully Integrated experiments successfully tested Hypotheses 1.1 and 2.2. Hypothesis 1.1, Dur-
ing training, if problems that belong to one concept are introduced along with problems that belong
to other concepts, error rates on tests are less than when concepts are introduced separately from one
another, was supported. Hypothesis 2.2, Delivery methods that force comparison of different prob-
lem types will result in longer-term retention of material than delivery methods that keep problem
types separate from one another, was supported.
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Figure 4: Fully Integrated Learning - Test Scores

These results are very different from the Drill and Test results. Hypotheses 1.1 and 2.2 support
the idea that complex training improves learning, whereas making the learning task too easy may
be counterproductive. Although the final test scores for Fully Integrated experiments never reached
100%, it may be unreasonable to ever expect them to do that. How realistic is it to assume that a
learner would consistently get perfect scores on any exam of truly challenging intellectual material?
Also, as we saw in the analysis of Drill and Test results, midterm scores of 100% were misleading.
They implied a level of interim learning and understanding which was not supported when the final
exam required the learner to distinguish complex concepts.

An analysis of test errors will provide more information about what the learner understands
on each test. It will be interesting to see if Hypothesis 1.5 is supported by the Fully Integrated
experiments (problem types that are related to one another become confused on tests). A preliminary
look at error and confidence data indicates that the types of learner errors are going to be more
complex than in the Drill and Test experiments. This is to be expected because a Fully Integrated
delivery forces the learner to compare all the problem types at once.

As with the Drill and Test experiments, I propose to analyze the conceptual development in
the hidden layers (see Section 8.2). Already, prior to having those results, this immersion-inspired
approach to learning is promising. The results from these experiments have provided enough in-
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formation to begin a conversation about how one might train math students in this manner. I will
discuss this idea further in Section 8.4.

7 Incremental Learning Experiments

These experiments were designed to test Hypotheses 1.1, 2.2 and 2.3. They were inspired by an
understanding in the machine learning community that it is often most effective to tackle large com-
putational tasks by starting with small problems and gradually increasing their complexity (Elman
1991b). Often, highly complex computational problems cannot be resolved with a direct assault.
The difficulties are not limitations in physical resources, but the large number of variables - their
unknown dependencies and interactions. The problem becomes a statistical one; when there are a
large number of co-dependent variables, it is extremely hard to discover the role that each one plays
in the problem and its solution. Given that the acquisition of intellectual expertise is very complex
and poorly understood, an incremental learning approach should produce better quality learning
and understanding than a direct approach. Thus, in these experiments I expected to see long term
retention that was better than in either the Drill and Test or Fully Integrated experiments.

7.1 Details of Training and Testing Regimen for Incremental Learning Experiments

The experiments reported in this section ran for a total of 140 epochs. As with the Drill and Test
experiments, there were three training periods. Each training period gradually increased the com-
plexity of the learner’s categorization problem. The network was first trained for 5 epochs to identify
Simple problems. During the second training period, Usub problems were added to the Simple prob-
lems. Training on the Simple-Usub mix ran lasted an additional 30 epochs. For the third training
period, Parts problems were added. Training on the Simple-Usub-Parts mix lasted an additional 105
epochs.

As with the Fully Integrated experiments, I initially gave midterms only at the training period
change points and at the very end of training (epochs 5, 35, 140). Later, I added midterms after every
epoch in order to look more closely at performance changes. During the first training period, only
Simple midterms were given; during the second training period, mixed Simple-Usub (SU) midterms
were given, and during the third training period, all midterms were mixed Simple-Usub-Parts.

The training times used in these experiments are different from those used in the other exper-
iments. Preliminary results running for 215 epochs (as in the other experimental scenarios) were
highly successful, and unlike Drill and Test experiments, performance was affected by altering the
transition points (recall that Fully Integrated experiments have no transition points). In the next
section I will discuss how altering the transition points affected performance, and in the Discus-
sion sections (Section 7.4 and Section 9.3) I will speculate on why these particular transition points
worked the best.

7.2 Training Results for Incremental Learning Experiments

As expected, the learning behavior in the Simple-only training segment was the same as in the Drill
and Test experiments: the training error curve showed an immediate drop-off (Figures 5 and 2).

When Usub problems were added for the second period of training (epoch 5), the training errors
jumped. This jump was not nearly as high as when Drill and Test switched completely to Usub, but
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Figure 5: Incremental Learning - Training Error.

lower than when Fully Integrated Learning began. Training error then rapidly dropped, although
it never reached zero. When Parts problems were added for the third segment of training (epoch
35), error again leaped and dropped, showing the same pattern: an initial rapid drop followed by
a continuing, fluctuating descent. As in the second segment of training, errors plateaued above
zero. In contrast to the Drill and Test training error, and more like the Fully Integrated training
error, Incremental Learning training error was very nearly unimodal. As can be seen in Figure 5,
almost all of the 100 experiments plateaued close together. Final training errors for Fully Integrated
learning were very close to those of Fully Integrated learning.

In the experiments where I made the training segments longer, little changed. Regardless of how
long the network trained for the SU and SUP segments, training errors never reached zero. However,
test results were mildly but negatively effected by substantially longer S or SU training (as discussed
in the next section). If the SU training was shortener, the SUP segment took substantially longer
to drop to its plateau. If the SU training segment was substantially shortened, SUP training errors
fluctuated more and took much longer to decrease.
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7.3 Testing Results for Incremental Learning Experiments

Figure 6 shows a fully representative subset of the test scores for the Incremental Learning exper-
iments. The types of midterms and the epoch transition points (5, 35, 140) are shown along the
x-axis. The test scores are on the y-axis. As can be seen on the figure, Simple-only midterms very
rapidly reached scores of 100%. When Usub problems were introduced (epoch 5), test scores began
to fluctuate severely. Scores would drop to, or near, zero, rebound, and then drop again. Over time,
although the fluctuation continued, the overall scores increased. In a few cases, midterm scores
reached 100%, however the majority of cases peaked at 70-75%.
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Figure 6: Incremental Learning - Test Scores

When Parts problems were introduced for the third training period (epoch 35), the pattern of
fluctuating scores was accentuated. Midterm scores immediately plummeted, although it is inter-
esting to note that even the downward drop was often not smooth, but marked by brief plateaus
and recoveries. Performance continued to deteriorate for longer than in the SU training segment,
with scores fluctuating lower and lower. In contrast to the SU midterm scores, SUP midterm scores
appeared to tighten in closer and closer to complete failure (for a while nearly all midterms fluc-
tuated well under 20%). Eventually, performance began to improve, with prominent individual
differences. Eventually, virtually all midterm scores surpassed the 70% point, averaging 81.9%,
with a standard deviation of 8.23.The maximum midterm score was 95.6%, higher than any score
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reached in a Fully Integrated learning experiment. As evaluated with a t-test, the Incremental Learn-
ing final exam scores were higher than those of the Fully Integrated learning (
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�� (���� /�� � ��� � � � � ��� ).

The types of errors made on tests, and confidence levels for all answers, have not yet been
fully analyzed. The data has been collected, and I propose to complete this analysis as part of my
dissertation (Section 8.3).

As I briefly mentioned in the previous section, longer periods of training did not always translate
to increased performance. In fact, there was a balance between doing enough training, and doing
too much training. Although extended training on the Simple and Simple-Usub segments (up to and
beyond the ”lowest error”) did not show overt signs of over-training, midterm test scores were higher
when training did not run well beyond these points. This evidence of over and under training might
have been revealed with the use of a validation test set, however, as I explained earlier (Section
4.2), the influence of a validation set would have interfered with my desire to model human-like
individual variations in learning. Finally, as with Drill and Test and Fully Integrated experiments, I
experimented with extending the final training segment to see if scores would continue to rise: they
did not.

7.4 Discussion of Incremental Learning Experiments

The Incremental Learning experiments successfully tested Hypotheses 1.1, 2.2, and 2.3. Hypothesis
1.1, During training, if problems that belong to one concept are introduced along with problems that
belong to other concepts, error rates on tests are less than when concepts are introduced separately
from one another, was supported. Hypothesis 2.2, Delivery methods that force comparison of dif-
ferent problem types will result in longer-term retention of material than delivery methods that keep
problem types separate from one another, was supported. Hypothesis 2.3, Delivery methods that
introduce new, increasingly complex, concepts along with reinforcement of old concepts, will result
in the best long-term retention of material, was supported.

As I pointed out in the previous section, the results for Incremental Learning were very differ-
ent from either Drill and Test or Fully Integrated learning. Incremental Learning appears to benefit
from having both structure and high complexity. By imposing structure upon the order in which
problem types are introduced during training, the network learner is allowed to focus on the charac-
teristics of a smaller number of problem types at the beginning of learning. However, the learner is
not allowed to become ”complacent” and overconfident early on. Just as the first concept (Simple
problems) is acquired, additional problems (Usub) are mixed in. The resulting confusion is apparent
in the fluctuating training error and midterm scores. Over time, as the learner grapples with the two
contrasting problem types, confusion (as measured by fluctuation) diminishes and midterm scores
rise. When Parts problems are introduced, it becomes vastly more difficult to discriminate between
the concepts. This added complexity causes yet another drop in confidence and midterm scores.
As would also be expected in a classroom situation, it is far more difficult to compare three related
problem types than two. So the confusion lasts longer and is more difficult to resolve. Also, individ-
ual learner differences can be expected to become more apparent with more challenging concepts.
Fortunately, the ”priming” effect of the previous training segments allows most Incremental Learn-
ing learners to eventually do well. In most cases they do better than the Fully Integrated learners.
Scores never reach 100%, yet, as I explained in Section 6.4, it is unrealistic to assume that highly
challenging and interrelated intellectual concepts, could ever be ”perfectly” understood. An expert
recognizes the deep multidimensional nature of problems in her or his domain. This perspective
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will sometimes lead to incorrect choices. So this less than perfect result validates the behavior of
the model.

8 Proposed Work

With the completion of the Incremental Learning Experiments, all parts of Hypotheses 1 and 2 have
been tested. Hypothesis 1 validated the model: An ANN can be used as a model to investigate how
people learn under different training scenarios. Hypothesis 1 was fully supported in three of its
sub-points (1.1, 1.2, 1.3) and conditionally supported in another (1.4). One sub-point (1.5) was not
supported by the Drill and Test experiments, but still needs to be examined for the Fully Integrated
and Incremental Learning experiments. Hypothesis 2, Different delivery methods result in very
different overall performance, was fully supported. In this section I will describe how I propose to
continue my work on this foundation. Sections 8.1 and 8.2 describe the work I intend to complete
first. Section 8.3 discusses a number of possible further directions: which ones I pursue depends on
earlier results. Section 8.4 discusses further directions that this dissertation may initiate.

8.1 Analysis of Test Errors

The first task is to complete the analysis of test errors for the Fully Integrated Learning and Incre-
mental Learning experiments. This analysis is a necessary foundation for the other proposed work
directions. The data has already been collected. I propose to do the same analysis as I have already
completed for Drill and Test experiments. This analysis includes conducting a quantitative analysis
of what types of errors (and their frequency) were made on critical midterms. In addition, I plan
to simultaneously analyze the confidence with which correct and incorrect answers were chosen.
These results will complement the test scores, and provide greater insight into the learners’ perfor-
mance on exams. They will also further test Hypothesis 1.5, Problem types that are related to one
another become confused on tests, more than unrelated problem types.

8.2 Test Hypothesis 3

The bulk of my Proposed Work consists of testing Hypothesis 3. Hypothesis 3 will analyze the
conceptual development that took place in each of the experimental scenarios. This information will
provide information about learning that adds to what has been learned from the training error and
test scores. Training and test data measure information that the Instructor (or researcher) requested.
Conceptual development directly reflects the learner’s internal perspective. We need to analyze this
perspective in order to fully understand the effect of each delivery strategy on the learner.

8.2.1 Details of Hypothesis 3

Hypothesis 3: Different delivery methods will result in different internal conceptual representations
and conceptual development.

Hypothesis 3 has three sub-points:
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(3.1) Delivery methods that emphasize Drill and Test will produce internal network representa-
tions that differ greatly depending upon what problem type has been recently studied.

(3.2) Delivery methods that introduce concepts using Incremental Learning, will produce inter-
nal network representations that change gradually over time.

(3.3) Delivery methods that introduce concepts using Incremental Learning, will result in better
conceptual development than either Drill and Test or Fully Integrated learning.

In order to analyze the conceptual development that took place during the Drill and Test, Fully
Integrated, and Incremental Learning experiments, the hidden units of the neural network will be
examined. As I explained in Section 3.1, the hidden nodes of a neural network contain data that
represent a concept or concepts. These data change over time as the network learns. Thus it is
important to analyze what concepts the network has at various stages of learning.

For the Drill and Test experiments I propose to begin by analyzing the hidden layer at critical
stages: the beginning of training, at transition points (S to U, U to P), at the beginning of the cram
session, and at the end of training. This will allow me to align stages of conceptual development
with critical midterm exams. I will also analyze the hidden layer at epochs that appear to be critical
based upon the training errors. For the Drill and Test learners, these include epochs when a plateau
begins (for those having trouble learning). This will allow me to compare conceptual development
between those learners who rapidly acquired the concept and those who did not. I also plan to
compare the conceptual development during the cram session for the two groups of learners.

For the Incremental Learning experiments I propose to begin by analyzing similar critical points:
beginning of training, transition points (S to SU, SU to SUP) and the end of training. This will
allow me to not only monitor development of these learners, but also to make comparisons with the
Drill and Test learners. As with Drill and Test, I will also analyze the hidden layer at epochs that
appear critical during learning. For Incremental Learning these points include the peaks and valleys
of fluctuations during SU and SUP training segments. In addition I may discover other potential
critical points after I have completed the analysis of test errors.

For the Fully Integrated Learning experiments, there are critical points at the beginning and
ending of training. There is also an apparent critical point when the training error begins to plateau.
These points are the ones I propose to analyze first. I also plan to sample the conceptual development
at one or two points along the plateau and along the initial steep descent. I will choose the exact
epochs after I complete the analysis of test errors. This analysis will hopefully provide information
about where interesting conceptual changes are occurring.

8.2.2 Using ICA to Analyze the Hidden Layer

I propose to conduct my analysis of the hidden layer using Independent Component Analysis (ICA).
ICA is a relatively new clustering algorithm - it was developed within the last 10 years. It is neurally
based, and has shown promise in some applications where Principal Component Analysis (PCA) has
failed. Most of the applications of ICA to date have been in engineering (multiple signal discrim-
ination for example) although there have been a few attempts to use it for linguistic analysis and
data mining (Bingham, Kuusisto, and Lagus 2002),(Isbell and Viola 1999),(Kolenda, Hansen, and
Sigurdsson 2000). We have installed a version of ICA, called FastICA (Hyvärinen and Oja 1997). I
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will provide a brief description of the ICA algorithm in the next section.

In parallel with the ICA analysis, I will use PCA. PCA has been widely used for analyzing
the hidden layers of artificial neural networks. So PCA results will be easy to interpret and use in
comparing with prior work. It will also allow me to contrast the capabilities of the ICA tool with a
method of known properties.

8.2.3 ICA Method

Because it is so new, I am including this technical section describing briefly how ICA works. This
section assumes a basic understanding of statistical terminology and concepts. It also assumes some
understanding of matrix manipulations, and some familiarity with theories of neural algorithms. For
a fuller explanation see (Hyvärinen, Karhunen, and Oja 2001).

ICA Preprocessing Step 1: The input vectors are first centered (normalized), to have zero mean
and unit variance (z-scores). Then a Covariance matrix is calculated from this normalized input
matrix. A Covariance matrix is an exploratory tool, showing all data variation in relation to each
other.

Step 2: Perform an Eigen Analysis (aka Eigen-value Decomposition- EVD) and PCA upon the
Covariance matrix.

EVD orthogonalizes (i.e. decorrelates) the components of the Covariance matrix. As a result,
two more ����� matrices are produced: an Eigen-value matrix, and an Eigen-vector matrix.

PCA orders the components so that those with the largest components come first. PCA also
provides the option to eliminate components with least variation, which reduces noise as a result.

Performing (Fast)ICA After Preprocessing FastICA (Hyvärinen and Oja 1997) is the name
of the implementation of ICA that I propose to use in my analysis. There are several competing
implementations of ICA, and each one has a slightly different algorithm. I chose FastICA because
it converges faster than other ICA algorithms, and does not require the user to pick a good learning
rate. These properties mean that in most situations, FastICA will produce results more quickly and
reliably than its competitors. The following discussion then, best describes FastICA.

ICA assumes that even after decorrelation and accounting for variance, an additional transfor-
mation of the data is necessary to reveal truly independent components. This is particularly true
in the case of data with a non-Gaussian distribution. When data has Gaussian distributions, in-
dependence and uncorrelatedness are equivalent; for non-Gaussian distributions, they differ, and
independence is the stronger property.

Thus, preprocessing is not theoretically necessary, but it reduces the computational load for
ICA. By starting to work with pre-processed data, the ICA algorithm can more rapidly converge on
a solution that other methods are unable to find.

A fundamental assumption of ICA is that the independent components are statistically indepen-
dent (i.e. � ����� � � � ��� � �	� ��� � ). Another assumption of ICA is that the independent components
are non-Gaussian (per above note). In practice, if only one of the independent components is Gaus-
sian, ICA will still work. If several components are Gaussian, then ICA will be unable to identify
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them. If all of the components are Gaussian, then ICA will perform as well as PCA but no better.
Another assumption of ICA is that the number of independent components is equal to the observed
mixtures. If this assumption doesn’t hold, it is usually because the data is highly multidimensional.
In this event, PCA can be used during preprocessing to reduce the dimensionality of the data.

There are two fundamental steps of all ICA methods. The first step is to formulate a valid con-
trast function. Solutions are found at the minima or maxima of the function. Statistical estimation
of the minima or maxima are based upon optimization algorithms. Many (but not all) optimization
algorithms are based upon gradient learning algorithms. The second step is to use an algorithm for
estimating the free variables of the system. There are two principal theoretical approaches. One
is based on Estimation Theory, the other on Information Theory. FastICA is a neural fixed-point
algorithm (not gradient based). It used an iterative weight-update scheme in order to obtain conver-
gence.

The bottom line is that ICA can take very complicated multi-dimensional data, and identify its
underlying structure. It can solve problems that are too complicated for other methods of statistical
estimation. For example, ICA was originally developed to tackle the “cocktail party problem”.
Imagine that you have several audio-tapes that were made at a party full of people. You would like
to separate out one or more of the original voices. This is very difficult, because you do not know
the positions of the microphones in relation to the people. However, ICA has had a lot of success
with applications of this type, which are known as Blind Signal Separation problems. Analyzing
the complex data in the hidden layers of an ANN is a good opportunity to test ICA further.

8.3 Possible Directions

There are some additional experiments that I would like to do depending on how the results of the
ICA analysis turn out. The following subsections introduce these ideas.

8.3.1 Different Encoding

Although the encoding scheme I have developed was constructed in order to minimize external
bias, it would be useful to create a different encoding scheme for the same data. Then, results for
the same delivery types could be compared with a different coding scheme. The primary reason
for making this comparison would be to find out what effect my original coding scheme had on
the results presented in this document. This new coding scheme would also have to be cognitively
justifiable. As with the current scheme, it would have to reflect what a human sees, which is not
necessarily what would be mathematically the most efficient or elegant.

8.3.2 Increase Test Set Sizes

As I explained in previous sections, the number of problems in each test set was determined as a
proportion of the number of problems in the training set that it was paired with. The proportion
of training set examples to test set examples was similar to that likely to be seen by a human in a
formal learning situation. This has meant that test sets were sometimes quite small. If I loosened
this restriction and created larger test sets (relative to training set size) it might be possible to more
easily see patterns of test behavior. However, this proposed work might prove unnecessary once I
have completed analysis of the current test errors.
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8.3.3 Create a Harder Conceptual Problem

One of the higher goals of successful calculus teaching is to enable students to make connections
between integration and differentiation. For each integration strategy there is a corresponding differ-
entiation strategy. Historically, math students have been taught a course in integration and a course
in differentiation. In many schools, the courses can be taken in either order. The connection between
the two classes is left for the student to figure out. If, after having completed both classes, a student
can look at an expression and identify underlying mathematical principles linking integration and
differentiation, she or he will be able to more easily acquire advanced mathematical concepts that
rely upon subtleties of both.

It would be interesting to extend my work to include this type of harder conceptual problem.
The idea is to first train the network from two different perspectives: identification of integration
solution strategies, and identification of differentiation strategies. I propose to see if the network
can acquire the ability to look at a problem in one format (say, integration) and identify the paired
solution strategy (differentiation).

This task would require the creation of a set of differentiation problems and their corresponding
solution strategies. A coding scheme similar to the one for integration problems would have to
be developed. Then the input layer of the ANN would have to be changed to hold either type of
problem. Ideally, the nodes in the input layer would be able to do double duty, holding either an
integration problem or a differentiation problem. The coding scheme for differentiation problems
will determine if this is possible. If not, the input layer will instead consist of one set of nodes for
integration problems and another set of nodes for differentiation problems.

There would be six output nodes in the new network, because the output layer would include
both differentiation and integration solution strategies. For each test problem, the correct response
would be to identify two answers equally, the integration solution strategy and the differentiation
solution strategy that corresponds to it. This is a fundamentally different test procedure, as the
desired goal on a test question would be to spread the output activation across two nodes equally,
rather than choose one, as in the current experiments.

For the architecture I intend to use a recurrent network. Recurrent networks have been success-
ful in modeling input processes that have dependencies over time (Cottrell and Tsung 1993). My
network will remember matched integration-differentiation pairs. The network will be trained by
inputting first one of the pair, and then the second. The recurrent network will be able to save the
input from the first (say, integration) problem, and then link that input with the second (differenti-
ation) problem that comes in the next time step. If all of the data is trained in pairs, the network
should learn to identify underlying regularities between the pairs.

8.4 Future Work

The work described in this section is work that I would like to continue later on. This work takes
the results reported in this document into new areas, working directly with humans, and applying
the results to other domains of expertise. All of the future work has been made possible by the
completed experiments.
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8.4.1 Studies on Humans

There are several approaches to extending these results to studies with adults. Perhaps the best way
to begin would be with lab experiments. As I discussed early in this document (Section 2.2.1) it
is extremely difficult to conduct controlled studies of realistic adult learning. However, now that
interesting learning behavior has been identified with three well defined delivery approaches using
this model, these same approaches can be investigated with people. One approach would be to
enlist three groups of volunteers, matched as well as possible in terms of prior exposure, motivation
and ability. These students could then be given calculus integration problems, with their solution
categories, to analyze, in whatever way they desire. Their analysis would be restricted only by
available time and the order in which they see the types of problems.

Another human study that needs to be done is to find out if learners perceive a similarity be-
tween Usub and Parts problems. Results from the Drill and Test experiments implied that there is
an underlying relationship between these two types of problems (Section 5.4). Students who are
currently taking calculus classes could be interviewed to elicit a holistic view of their conscious
and sub-conscious understanding. It would be important to interview learners who are apparently
unsuccessful as well as successful.

8.4.2 Other Domains of Expertise

As I discussed in the Introduction and Background sections of this document, there are many fea-
tures of expertise that cross domains. Therefore, it will be important to apply this model to domains
other than calculus. There are many potential directions; the one that appeals to me the most is Com-
puter Science. This is a logical choice as well because Computer Science is a mathematically based
discipline (Beaubouef 2002). In addition, there is a large body of literature about student learning
problems in Computer Science (for a few examples see (Chalk 2001),(Fleury 2000),(Haberman and
Averbuch 2002),(Ginat 2003)). Thus, as with mathematics, there would be much information with
which to validate the model.

9 Perspectives from Learning Theory

This section is the first of two extended Discussion sections (the other is Section 10). The purpose
of this section is to discuss similarities between my results and psychological theories of human
learning. These theories are well known to educational researchers, but researchers in other fields
are often not aware of them. Because a primary motivation for my research is to improve student
learning, it is useful to see how my results support established theories of human learning, and how
these theories predict my results. In Section 9.1 I discuss the parallels between the Drill and Test
results and Behaviorism. In Section 9.2 I discuss how theories of second language learning can
shed light on the results from the Fully Integrated Experiments. In Section 9.3 I speculate on the
relationship between the Incremental Learning results and Constructivism.

9.1 Drill and Test Experiments

Apparently, all Drill and Test learners were only able to retain one concept in their memory. For the
majority of learners, this was the concept seen most recently. Previous concepts were not integrated
into long-term memory, but were flushed out. As each new problem type was introduced, the
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network received feedback (visible on Figure 2 as increased training error) that existing decision-
making strategies were no longer successful. Thus, there was no immediate incentive to retain them.
From a psychological perspective, there is more incentive to forget early material. Once a subject
is no longer needed, it symbolically places ”closure” upon that material. With humans, midterms
reinforce this closure.

As can also be the case with human learners, single-subject midterms say nothing about long
term conceptual understanding, i.e. retention, generalization and transfer of previously learned
material. In fact, as shown in these studies, they may provide misleading or falsely encouraging
data. A learner may believe, and thus report, that they have learned the material, when in fact
they have merely learned what the expected answer is at any given time. It is noteworthy that in
these experiments the network learners made their incorrect choices very confidently. This false
confidence implies that the network learner was unaware that it had a problem, and was responding
mechanically to each question. Only when we examine the results of the comprehensive final exam,
with or without last minute cramming, do we discover the magnitude of the learning problem.

This false confidence and forgetting resembles some important aspects of Behaviorist psycho-
logical learning theory. Classic studies in Operant Conditioning showed that behavior increases in
frequency if it is followed by a positive reward (Skinner 1938/1999), (Thorndike 1898). When that
reward is removed, the behavior rapidly drops to extinction. It is possible to conceptualize what is
happening in Drill and Test from this perspective. Each problem set is reinforced for a period of
time, only to be displaced by a new one. As only one form of input is introduced at a time, the
output choice becomes almost mechanical: ”when presented with a problem, choose Simple (Usub,
Parts)”. There is no motivation to learn at any other level. When the network learner takes the SUP
exam, it continues to respond to each problem with the answer that was most recently rewarded
(Parts). Because it is no longer receiving feedback, the network repeats the same mistake over and
over again.

Perhaps the most interesting question arising from the results of the Drill and Test Experiments
concerns the fundamental nature of ”learning”. Within the educational research and psychological
literature, definition of this term has been and continues to be controversial; the results from these
studies also bring up questions about what learning is. For example, just what has been ”learned”
at the time of the midterms? If the learner performs well on a midterm yet later forgets the mate-
rial, was the material really ever ”learned”? What does it mean if the learner is unaware of being
confused? What concepts is the learner creating when she or he encounters material delivered with
the Drill and Test technique? With humans, these and other questions can be investigated via the
use of individualized assessments, interviews or other qualitative investigation. Equivalently, with
a computational model, we can perform a hidden layer analysis. Such an analysis is part of my
Proposed Work (see Section 8.2). Meanwhile, the evidence presented so far justifies the use of the
term ”apparent learning”. From this point forward, I will use this term to refer to situations in which
there is evidence of short term or surface level recognition of problems, but the learner is not fully
integrating important concepts.

Many years ago, psychologists viewed mathematics learning as a collection of isolated skills
(Thorndike and Skinner 1922), but more recently, studies show that instructing with this approach
results in poor conceptual understanding (Carpenter, Corbitt, Kopner, and Lindquist 1980), (Resnick
and Ford 1981). Therefore, even though some of the Drill and Test results may appear ”obvious”
from a machine learning perspective, the results are worth thinking about. That similar behavior
has been reported in human studies not only supports the cognitive validity of the model, it begs the
question as to why so much instruction continues to be delivered using this technique?
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9.2 Fully Integrated Experiments

Fully Integrated learners are practicing and absorbing information in an unguided environment.
By its very nature, it is difficult to study unstructured learning. However, there is a great deal of
literature and theory about second and foreign language learning which can provide an interesting
perspective on these results. Although “natural language learning” (as unguided full immersion is
referred to in the second language learning literature) can be very effective, an extensive number of
studies show that learning improves even more if some structure is imposed in the early stages of
learning (for a review see (Spolsky 1989)).

The results from my Fully Integrated experiments appear to fit well with the literature on second
language learning cited above. After some initial difficulty (seen as early training error), the Fully
Integrated learners perform well when immersed in all the integration problems. Also, learning was
even better when full immersion was preceded by early structure (as in the Incremental Learning
Experiments - see next section). Like with natural language learners, the network is probably con-
fusing similar-appearing answers; we will get a fuller picture of what these errors are like after I
complete the analysis of errors.

9.3 Incremental Learning Experiments

Incremental Learning learners followed more independent paths during training than either Drill and
Test or Fully Integrated learners. This individual variation became more prominent as the concepts
became more difficult to learn. Some learned more quickly than others. All of them alternated better
test scores with worse test scores, as they appeared to struggle with new material. Over the long
run, all of these learners were able to achieve acceptable or excellent scores on their comprehensive
exams.

Psychological learning theory suggests that these results reflect human learning behavior. Pi-
aget’s well known theory of learning via equilibration is achieved by a process of assimilation and
accommodation (Gruber and Voneche 1995). These two actions do not take place in a predictable
order. The mind fluctuates back and forth between them, as new experiences provide an influx of
external perturbations. During this process, the learner feels confused because she or he is experi-
encing cognitive contradictions. These contradictions, and the confusion, continue until eventually
the mental concepts stabilize (”equilibrate”)(Gruber and Voneche 1995). Although most of Piaget’s
life and work predated modern advances in AI and ANNs, others have presented strong evidence
that Piaget himself would have been supportive of computational approaches to psychological mod-
eling (Boden 1989).

Equilibration is at the heart of, and is a precursor of, modern Constructivist theories of learning.
The Constructivist perspective views learning as a self-regulatory process of struggle and conflict.
Existing cognitive concepts have to negotiate with discrepant new insights. The process of negoti-
ation eventually produces new meaning (Fosnot 1996). This cognitive behavior resonates with the
results seen in my studies, and the behavior of connectionist models in general. As I described ear-
lier (Section 3.1), ANNs gradually learn by making guesses, receiving feedback about how wrong
they were, adjusting internally, and trying again. Large amounts of input data eventually allow the
network to make very accurate guesses, however, in the beginning the network will making a lot
of large mistakes. The test scores in the Incremental Learning experiments also fluctuate widely
up and down in the beginning, appear to be doing worse and worse overall, but then begin a fairly
steady improvement (Figure 6).
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Many educational theorists with a Constructivist orientation also believe in the existence of a
“Zone of Proximal Development”(ZOPED) (Vygotsky 1978). The ZOPED is a psychological point
on the very edge of a person’s current understanding of some concept. If new material is presented
below the ZOPED, deep analysis is not required and surface (or no) learning may result. If new
material is beyond the ZOPED, the learner is overwhelmed or confused. The implication is that an
ideal way to teach is to scaffold the delivery of material at the learner’s ZOPED. This will force the
learner to struggle with new material in a structured supportive environment. At first the learners will
have problems, but eventually they will grasp the new concept. Then the ZOPED moves upwards
and the process can be repeated.

The Incremental Learning experiments completed here are an example of scaffolded delivery
using a ZOPED. Concepts start out easy (Simple integration), and gradually become more complex
(Usub, then Parts). The learner is forced to compare old concepts with new concepts, but only one
new concept is added at at time. The moment at which a new concept is introduced has been planned
carefully, so that it happens just as the learner has begun to fully understand the current concept(s)
(as measured by the point when training error reached zero or a low plateau). Each transition point
can be thought of as occurring in a ZOPED. As I reported earlier, if the transition happened earlier,
the learner took longer to learn the next concept. In this situation, the learner was overwhelmed
by new information it was not ready for. If the transition occurred later, performance on tests was
worse. In this situation, the learner had over-trained; in human terms, the learner had over-analyzed
the problems, and read too much into the examples.

There are other areas as well, in which studies of learning and growth have reported that com-
plex learning may sometimes result in temporary regressive behavior. One of these areas is infant
development. For example, we know that as vision develops, the eye tries to identify increasingly
complex details of what it sees. An apparent information overload occurs, and when this happens,
infants revert temporarily to simpler behaviors (Cohen 1998). Another example involves motor
development. Research has shown that when infants begin to walk, cognitive overload occurs and
interferes with arm usage. Thus they temporarily revert from one armed to two armed reaching until
walking is integrated into their skill set (Corbetta and Bojczyk 2002). Finally, models of species
evolution have shown that highly complex yet general behavior evolves more successfully if tasks
are learned incrementally (Gomez and Miikkulainen 1997). These results from studies in widely
different domains support the results of my experiments showing that that Incremental Learning
produces the best learning of complex tasks.

10 Perspectives from Symbolic Cognitive Science

This is the second of two extended Discussion sections (the other is Section 9). The purpose of
this section is to contrast my approach with the symbolic cognitive models used previously to study
expertise. Symbolic and connectionist models are the two computational approaches used to model
higher-order thinking. This document has focused on the connectionist approach used for my ex-
periments. It is useful to also discuss the symbolic approach in order to understand my results in the
context of cognitive studies as a whole. In Section 10.1 I provide a historical context for symbolic
cognitive science. In section 10.2 I introduce the primary types of symbolic models of cognition,
and in section 10.3 provide examples of symbolic models that have been applied to the study of
expertise and mathematics learning.
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10.1 The Historical Context of the Symbolic Paradigm

Symbolic computational models have long been used successfully to study higher-order thinking
tasks. In order to understand why they have such a long history, and why my approach of using an
ANN is unique, one must look at the history of artificial intelligence (AI).

The belief that cognition is a form of computation, is neither new, nor unique to computer
science. This perspective predates 20th Century studies in artificial intelligence by hundreds of
years. Symbolism, the paradigm which has dominated cognitive science and AI, is socially and
historically grounded in the writings of the philosopher Thomas Hobbes (17th C.). Hobbes stated
unequivocally: ”by RATIOCINATION I mean computation”, which he explained as meaning that
thinking consists of symbol operations that function most clearly and rationally when following
methodical rules ((Hume 1739/1977) and as cited in (Haugeland 1985)) .

Hobbes’ ideas were echoed and expanded upon by subsequent philosophers including David
Hume, who introduced an explicitly mechanical theoretical perspective. The influence of Hume is
clearly visible in the development of 20th Century cognitive psychology. Jerome Bruner, a pioneer
in the field, reflected the dual influences of philosophical thought and the emerging field of com-
puter science in the introduction to ”A Study of Thinking”: ”our own work has progressed from
initial concern with the number of bits of information assimilated...to an ultimate concern with
the informational properties of long sequences of acts called strategies...” (Bruner, Goodnow, and
Austin 1956). These writings reflect the continued assumption that human cognition is symbolic
and operates via externally driven and sequential mechanisms.

Early computer science pioneers of cognition such as Herbert Simon were strongly influenced
by Bruner in their early writings. Like Bruner, Simon believed that there are few intrinsic character-
istics of thinking - most of what occurs is due not to biological properties but to environmental input
and subsequent adaptation (Simon 1969/1981). Simon explicitly placed the human mind and brain
together with the computer as members of the family of physical symbol systems. Furthermore,
he described memory and language as list structures operated upon by a serial processor (Simon
1969/1981).

This approach to the study of cognition dominated the AI community for several decades follow-
ing the Second World War. Although alternative theories have since emerged, many AI researchers
still prefer symbol-based theories of cognition. Given that the symbolic paradigm has been around
for so long, it is no surprise that computational models have also been predominantly symbolic.
Symbolic models have been very successful in modeling many attributes of expertise. However,
some model actual human behavior better than others. The difficulty that symbolic computational
models have mimicking human behavior, is that they are generally not robust when there are no
known rules and algorithms; they are unable to self-reflect and reorganize internal processing based
upon new information; they cannot identify unanticipated goal states or patterns. These limitations
make it difficult to model the human process of acquiring intellectual expertise.

In order to demonstrate this difficulty and opportunity, the next two sections will describe some
of the dominant types of symbolic models and how they have been applied to studying expertise
and mathematics learning.

10.2 Types of Symbolic Models of Cognition

Stimulus-Response (S-R) models represent one of the earliest approaches to modeling cognition.
They are based upon classical psychological behaviorism and have been used with some success in
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the development of robots that learn to navigate unknown environments. These systems excel when
all possible inputs and outputs are known, and when there are direct relationships between them.
(A very interesting and enlightening look at early work in this area is described by Murray (1955)).
However, strict S-R models are inherently unable to generalize problem-solving behavior and thus
cannot mimic higher-order thinking such as intellectual expertise. For this reason, most simple S-R
models have been augmented with rule-based systems.

Rule-based systems expand upon simple S-R models in that they utilize vast data stores and
anticipated scenarios to guide decision-making. These systems, also known as expert systems,
have been extensively deployed in industrial environments. They typically use extensive knowledge
bases to provide input to a decision making process. This process contains information about which
specific sequences of actions will lead to desired solutions. Examples typical of these systems can be
found in medicine (Warren, Warren, and Freedman 1993), law (Woodin 2001), engineering (Reed
2000), and reading comprehension (Dyer 1983). However, expert systems depend upon logical
rules; they do not perform well when desired outcomes are based upon statistical correlations. In
addition, although they are domain experts, expert systems focus on achieving a goal state; they are
less concerned with the learning process. Thus they do not model learning as it occurs in humans.
These qualities prevent expert systems from being used to model the cognitive processes utilized by
a human expert.

Various numerical methods have been used to address reasoning and learning under uncertainty.
Often they have drawn upon probability theory, especially the Bayes rule. These inference networks
have been utilized to study domains where prior probabilities are available and consistent, such as
process control (Tsoukalas, Lee, and Ragheb 1989). Another numerical method is Fuzzy Logic,
which is based upon theories of cluster analysis. Fuzzy logic has been successful in control systems
such as wireless networks (Shen, Mark, and Ye 2000). Numerical uncertainty methods are generally
good at prediction and control, and analyzing properties of data sets. Successful such applications
include speech recognition (Bergadano and Giordana 1986) and hardware level controllers (Sala-
pura and Hamann 1996). However, numerical uncertainty approaches cannot make good decisions
without consistent prior probabilities. As with expert systems, these models focus on reaching a goal
state and are not concerned with the human learning process. They are poorly suited for analyzing
and formulating hypotheses about intuitive problem solving, an important ability that emerges in
human experts.

10.3 Symbolic Models of Expertise and Mathematics Learning

Several symbolic models for expertise have been developed. Some of these models focus on math-
ematics learning; others mimic human memory and recognition more generally. The purpose of
this discussion is to illustrate, through example, that symbolic models reflect a different school of
thought about human cognition than connectionist models do. The models reviewed in this section
provide examples of the philosophical contrast between the symbolic and connectionist paradigms.
The models in this section usually prioritize efficiency, or achieving a goal state, over understanding
the human learning process.

The LEX system built decision trees (DT) to classify and solve calculus integration problems
(Mitchell 1983), (Mitchell and Ranan 1983). LEX learned by creating practice problems, presenting
hypothesized solutions, solving the problem, and then working backwards from the solution to form
a heuristic. This system has much in common with the operations I am using with an ANN. Mitchell
refers to Integration by Parts, Simple Integration and Usubstitution as operators; my model refers
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to them as solution strategies. Both LEX and my system learn what ”operator” is appropriate for a
given integration problem. Both models seek a low-cost solution and neither is guaranteed to find it
because of the classic problem of local minima. Both evaluate their performance during processing:
the DT by introducing negative examples, and the ANN by adjusting weights during training. A
partially learned heuristic in LEX roughly corresponds to the hidden layers of the ANN during
training.

On the other hand, LEX has drawbacks as a model of human behavior. LEX creates its own
training examples to help it learn. This is highly efficient, but not representative of the majority of
human learners, whether they are in the classroom or studying alone. Also, LEX learns by solving
the problems and working backwards to form a heuristic. My interviews with mathematics faculty
and TAs indicate that this is a common pedagogical tactic. Unfortunately, this approach to training
ignores evidence, from those same interviewees and previously cited literature, that experts do not
usually learn strategies by working backwards.

ACT-R is another symbolic model of learning which has been applied to mathematics. ACT-R
is an ongoing project, originating in the early 1980s. The mission of the research group is broad
(”to develop a cognitive architecture that can perform in detail a full range of cognitive tasks”)
but their goals differ from mine. Many of the ACT-R applications have been intelligent tutors for
mathematics education and computer programming. A tutor reacts to an outside learner; it does
not itself attempt to learn mathematical concepts. In contrast, I am attempting to model what is
happening inside the learner’s mind.

A somewhat different symbolic approach to modeling expertise was taken by Mooney (1993).
He posited that ”people acquire expertise through a process of abstract instruction and experi-
ence with specific cases” (Mooney 1993). Feature information is critical for concept learning in
Mooney’s model. Feature data belongs to one of two categories: ”explanatory” or ”non-explanatory”.
Explanatory data is data that does not aid in proper categorization. Such data may be irrelevant or
obscure; in any case it is not covered by any known rule for application (Mooney 1993). These
statements are certainly appealing. Feature data is important for categorization as is learning via
examples. Mooney’s implementation of these ideas however, assumes, as does Mitchell, that there
are rules for all problem-solving situations; if there is no known rule, either the rule must be found
or the data is not helpful. An alternate perspective, the one I take in my model, is that data that
may appear irrelevant is often engaged in subtle interactions with other data - this is how complex
intellectual schema are formed.

In general, the symbolic models just described focus on reaching a desired goal state in the most
computationally efficient manner possible. Their focus is not on the human learning process. In
part this choice was made by previous researchers. It is easier to study something that is composed
of facts and behaviors, than it is to study an unknown process. Symbolic models are an important
step in the study of expertise; we cannot reach a goal state (in this case expertise) if we do not first
know what it looks like. Now that we have some of that knowledge, it is possible to place focus on
the process of learning it. My model contributes to both computer science and cognitive science by
doing so.

11 Conclusion

In this proposal I have shown results supporting the following two hypotheses: 1) An artificial neural
network can be used as a model to investigate how people learn under different training scenarios
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2) Different delivery methods result in different overall performance. These results provide new
insight into how humans learn complex cognitive tasks. In my Proposed work I intend to test a third
hypothesis: 3) Different delivery methods will result in different internal conceptual representations
and conceptual development.

The results reported in this study, and the proposed dissertation work, will contribute to many
fields. For computer science, and artificial intelligence in particular, this research expands the body
of existing computational models of human learning and provides a new example of modeling
higher-order cognition. We have discovered that priming an ANN can produce higher performance
than inputting all the types of data randomly. This discovery can lead to re-evaluating the training
design of existing computational models in which performance and efficiency are the primary goals.

The results reported in this study have also given cognitive science new understanding of how
conceptual development takes place in different types of learning. Educators now have additional
evidence that structured, integrated delivery methods are better for learners than oversimplification
and isolation of learning tasks. In addition, this work encourages educators and cognitive scientists
to focus on analyzing problem examples, to see what their underlying structure contributes to learner
categorization and subsequent problem solving.
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