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Our society currently relies heavily on test scores to measure individual progress,

but typical scores can only provide a limited amount of information.  For instance, a test

score does not reveal which of the assessed topics were mastered and which were not

well understood.  According to the U.S. government, this is no longer sufficient.

The No Child Left Behind Act of 2001 calls for diagnostic information to be

provided for each individual student, along with information for the parents, teachers, and

principals to use in addressing individual student needs.  This opens the door for a new
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area of psychometrics that focuses on the inclusion of diagnostic feedback in traditional

standardized testing.  This diagnostic assessment could even be combined with

techniques already developed in the arena of computer adaptive testing to individualize

the assessment process and provide immediate feedback to individual students.

This dissertation is comprised of two major components.  First, a cognitive

diagnosis-based model, namely the fusion model, is applied to two large-scale mandated

tests administered by the Texas Education Agency; and secondly, computer adaptive

testing technology is incorporated into the diagnostic assessment process as a way to

develop a method of providing interactive assessment and feedback for individual

examinees’ mastery levels of the cognitive skills of interest.  The first part requires

attribute assignment of the standardized test items and the simultaneous IRT-based

estimation of both the item parameters and the examinee variables under the fusion

model.  Examinees are classified dichotomously into mastery and non-mastery categories

for the assigned attributes.  Given this information, it is possible to identify the attributes

with which a given student needs additional help.  The second part focuses on applying

CAT-based methodology, and in particular item selection, to the diagnostic testing

process to form a dynamic test that is sensitive to individual response patterns while the

examinee is being administered the test.  This combination of computer adaptive testing

with diagnostic testing will contribute to the research field by enhancing the results that

students and their parents and teachers receive from educational measurement.
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CHAPTER ONE: INTRODUCTION

Typically, large-scale standardized assessments provide a single summary score

to reflect the overall performance level of the examinee in a certain content area.  The

utility of large-scale standardized assessment would be enhanced if the assessment also

provided students and their teachers with useful diagnostic information in addition to the

single overall score.  Currently, smaller-scale assessments, such as teacher-made tests,

are the means of providing such helpful feedback to students throughout the school year.

Negligible concern is expressed about the considerable classroom time that is taken by

the administration of these formative teacher-made tests because they are viewed as

integral parts of instruction.  Conversely, educators view standardized testing of any kind

as lost instruction time (Linn, 1990).  Some advantages of standardized tests over

teacher-made tests are that they allow for the comparison of individuals across various

educational settings, they are more reliable, and they are objective and equitable (Linn,

1990).  The advantage of teacher-made tests, on the other hand, is that they provide very

specific information to the students regarding their strengths and weaknesses in the tested

material.  Large-scale standardized testing would be even more beneficial if it could also

contribute to the educational process in a role beyond that of evaluation while

maintaining these existing advantages, such as the reporting of diagnostic feedback.

Then the students could use this information to target improvement in areas where they

are deficient.

A new approach to educational research has begun to effloresce in order to

provide the best of both worlds. This research area, dealing with the application of
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cognitive diagnosis in the assessment process, aims to provide helpful information to

parents, teachers, and students, which can be used to direct additional instruction and

study to the areas needed most by the individual student.  This beneficial information

provided by diagnostic assessment deals with the fundamental elements or building-

blocks of the content area.  The combination of these elements or attributes comprises the

content domain of interest.  This form of diagnostic assessment is an appropriate

approach to conducting formative assessment, because it provides specific information

regarding each measured attribute or content element to every examinee, rather than a

single score result.

An ideal assessment would not only be able to meet the meticulous psychometric

standards of current large-scale assessments, but would also be able to provide specific

diagnostic information regarding the individual examinee’s educational needs.  In fact,

the provision of this additional diagnostic information by large-scale state assessments

has recently become a requirement; the No Child Left Behind Act of 2001 mandates that

such feedback be provided to parents, teachers and students.

Despite this requirement, constructing diagnostic assessment from scratch is

expensive and impractical.  A more affordable solution is to incorporate diagnostic

measurement into existing assessments that state and local governments are already

administering to public school students.  So, in order to incorporate the benefits of

diagnostic testing with the current assessment situation, cognitively diagnostic

approaches would need to be applied to an existing test.

Diagnostic assessment is a very advantageous approach to measurement.  In

traditional testing, different students may get the same score for different reasons
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(Tatsuoka M. M. and Tatsuoka, K. K., 1989), but in diagnostic testing, these differences

can be discovered and shared with the examinee and his/her teacher.  Diagnostic

assessment allows the testing process to serve an additional instructional purpose in

addition to the traditional purposes of assessment (Linn, 1990), and can be used to

integrate instruction and assessment (Campione and Brown, 1990).  Furthermore,

diagnostic testing offers a means of selecting instructional material according to an

individual’s needs (Embretson, 1990).

While traditional tests can accomplish assessment goals, such as a ranked

comparison of examinees or grade assignments based on certain criteria, they do not

provide individualized information to teachers or test-takers regarding specific content in

the domain of interest (Chipman, Nichols, and Brennan, 1995).  Traditional assessment

determines what an individual has learned, but not what s/he has the capacity to learn

(Embretson, 1990).  Diagnostic assessment can be applied to areas involving the

identification of individuals who are likely to experience difficulties in a given content

domain, and it can help provide specific information regarding the kinds of help an

individual needs.  Furthermore, the cognitive diagnosis “can be used to gauge an

individual’s readiness to move on to higher levels of understanding and skill” in the given

content domain.  (Gott, 1990, p. 174).

Current approaches dealing with cognitive diagnosis focus solely on the

estimation of the knowledge state, or attribute vector, of the examinees. This dissertation

proposes the combination of the estimation of item response theory (IRT)-based

individual ability levels (θ̂ ) along with an emphasis on the diagnostic feedback provided
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by individual attribute vectors (

€ 

ˆ α ), thus bridging the current standard in testing

technology with a new area of research aimed at helping students benefit from the testing

process through diagnostic feedback.

The goal of this research is to not only simultaneously measure individuals’

knowledge states and conventional unidimensional IRT ability levels, but to do so in an

efficient way.  This research will apply the advantages of computerized adaptive testing

to the new measurement area of cognitive diagnosis.  The goal of computerized adaptive

testing is to tailor a test to each individual examinee by allowing the test to hone in on the

examinees’ ability levels in an interactive manner.  Accordingly, examinees are relieved

from answering many items that are not representative of their abilities.  To accomplish

this goal, this research study relies on the technology of computer adaptive testing.

The aim of this research is to combine the advantages of computerized adaptive

testing with the helpful feedback provided by cognitively diagnostic assessment, to

enhance the existing testing process.  This dissertation proposes a customized diagnostic

testing procedure that provides both conventional unidimesional ability estimates as well

as a report of attribute mastery status to the examinees, instead of just one or the other.

The key idea of this work is to utilize the shadow test technique to optimize the

estimation of the traditional IRT-based ability level, θ̂ , and then select an item from this

shadow test that is optimal for the cognitive attribute vector, 

€ 

ˆ α , for each examinee.  But

first, the founding concepts of this research must be elucidated.
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CHAPTER TWO: LITERATURE REVIEW

Traditional IRT-Based Testing

Item response theory (IRT) is a common foundation for wide-scale testing.  IRT is

based on the idea of test homogeneity (Loevinger, 1947) and logistic statistical modeling

(Birnbaum, 1968), and uses these probabilistic models to describe the relationship

between item response patterns and underlying parameters.  IRT uses the item as the unit

of measure (rather than the entire test) to obtain ability scores that are on the same scale

despite the differences in item administration across examinees (Wainer and Mislevy,

2000).  As outlines in Rogers, Swaminathan and Hambleton’s (1991) text, two main

axioms are assumed when employing IRT:

(1) The performance of an individual on a set of test items can be rationalized

by an underlying construct, latent trait, or set thereof.  The context of

educational testing uses individual ability levels as the trait, which

accounts for correct/incorrect response patterns to the test items.

(2) The interconnection between this performance and the intrinsic trait or set

of traits can be represented by a monotonically increasing function.  That

is to say, as the level of ability or trait of interest increases, the probability

of a response reflecting this increase (specifically for this context, a

correct response) also increases (Rogers, Swaminathan and Hambleton,

1991).

A plethora of possible IRT probability models are available, and a few of the most

common will be briefly discussed.  Each of these three models maps out a probabilistic
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association between the items and the ability level of the examinee (j), denoted as 

€ 

θ j .

These three models are respectively referred to as the one-, two-, and three-parameter

logistic models.  The one-parameter logistic model considers the difficulty level of the

items on the test, denoted as bi for each item i.  As the name suggests, item with a higher

degree of difficult are harder to respond correctly to, and hence call on a higher level of

the ability trait θ  to do so.  The probability of obtaining a correct response to item i given

a specific ability level θ j is shown in Equation 1:

      

€ 

Pij Yij = 1θ j( ) =
e θ j −bi( )

1+ e θ j −bi( )        (1)

for i = 1, 2, …, n, where n is the total number of items, and Yi denotes the response to

item i (Rogers, Swaminathan and Hambleton, 1991).  The one-parameter logistic model

is also referred to as the Rasch model.

Next, the two-parameter logistic model also involves this item difficulty

parameter, bi, but includes another item parameter which deals with the item

discrimination, denoted as ai.  Item discrimination reflects an item’s facility in

discriminating between examinees of differing ability levels.  The value of the item

discrimination parameter is proportional to the slope of the probability function at the

location of bi on the ability axis (Rogers, Swaminathan and Hambleton, 1991).  The

probability of obtaining a correct response to item i given an ability level θ j, is shown in

Equation 2, as described by the two-parameter logistic model:

   

€ 

Pi Yij = 1θ j( ) =
eDai θ j −bi( )

1+ eDai θ j −bi( )        (2)
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for i = 1, 2, …, n, and where D is a scaling constant, and n and Yi hold the same meaning

as in the previous model (Rogers, Swaminathan and Hambleton, 1991).

Finally, the three-parameter logistic model (3PL) includes both the difficulty level

bi and discrimination parameter ai, but also adds a third item parameter, called the

pseudo-chance level, denoted as ci (Rogers, Swaminathan and Hambleton, 1991).  The

pseudo-chance level allows for the instance where the lower asymptote of the probability

function is greater than zero; that is to say, the examinees have some non-zero probability

of responding correctly to the item regardless of ability level.  The 3PL probability of

obtaining a correct response to item i given a θ j level of ability is shown in Equation 3:

        

€ 

Pij Yij = 1θ j( ) = ci + (1− ci)
eDai θ j −bi( )

1+ eDai θ j −bi( )        (3)

for i = 1, 2, …, n, and all variables are defined as previously noted (Rogers, Swaminathan

and Hambleton, 1991).  Notice the similarities between these models, and in particular,

how each is based on the previous.  In fact, the latter two can simplify to the other one(s)

by setting ci to zero (for the two-parameter logistic model) or by setting ai equal to one

and ci to zero (for the one-parameter logistic model).

These are just a few of the possible model available for describing the relationship

between item response patterns and the latent individual ability levels and item

parameters.  The next portion of this work will discuss a different approach to testing

called diagnostic assessment, and will eventually lead to a discussion about how to

combine these long-established IRT approaches with new diagnostic assessment

techniques.
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Diagnostic Assessment Models

The focus of cognitive diagnosis is to provide individual feedback to examinees

regarding each of the attributes measured by the assessment.  An attribute is defined as a

“task, subtask, cognitive process, or skill” somehow involved in the measure (Tatsuoka,

1995, p.330).  But measuring individuals with respect to the attributes is not the only

requirement of a good cognitive diagnosis model.  A model must also allow the items to

be examined in the context of the cognitive diagnosis, or else the results from the

assessment cannot be standardized or understood in a larger testing framework (Hartz,

2002).  In fact, Hartz, Roussos, and Stout (2002) describe three desirable characteristics

of an ideal cognitive diagnosis model as the ability to

(1) Allow the attributes to be appraised with respect to individual examinees,

(2) Allow the relationship between the items and the attributes to be

evaluated,

(3) Statistically estimate the parameters involved in the model.

There are at least fourteen models for diagnostic assessment, most of which fall

under two major branches.  The first deals with models based on Fischer’s (1973) Linear

Logistic Test Model (LLTM).  The second branch of the cognitive diagnosis literature

deals with models that employ Tatsuoka’s and Tatsuoka’s (1982) Rule Space

methodology as a foundation.  Each model has its strengths and weaknesses.  A handful

of the models will be described, followed by a justification of the model of choice for this

research study.
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Fischer’s LLTM

One of the first cognitive diagnosis models was the LLTM, developed by Fischer

in 1973.  The LLTM is an expansion of the basic Rasch model to take into account the

cognitive operations required for correct item responses.  To do this, the Rasch item

difficulty is partitioned into discrete cognitive attribute-based difficulties.  Hence, the

Rasch item difficulty (denoted as σi) equals the weighted sum of these attribute-based

difficulties, as shown in Equation (4):

           ∑ +=
k

kiki cf ησ        (4)

where fik is the weight of factor k in item i, ηk is the difficulty parameter (or “effect”) of

factor k across the entire exam, and c is a normalizing constant (Fischer, 1973).  The

weight of factor k in item i, denoted as fik, indicates the extent to which factor k is

required by item i.  (Please note that this concept is analogous to a Q-matrix entry, which

is discussed in further detail subsequently.)  Substituting this for the item difficulty

parameter in the Rasch model yields the LLTM, as presented in Equation (5):

( )


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


∑ +−−
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==
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1

1
1

k
kik cf

jij

e

XP
ηθ

θ        (5)

where Xij equals one when examinee j responds correctly to item i and equals zero

otherwise.

The key idea in the LLTM that makes it applicable in the context of diagnostic

assessment is that the item difficulty is comprised of the composite of the influences of

the basic cognitive operations, or “factors,” necessary for correctly solving an item.

These operations can be thought of as cognitive building blocks or attributes.



10

The person parameter, however, remains a single unidimensional ability

parameter (θj), without any sort of attribute-specific estimate for individual examinees.

The LLTM lays the foundation for exploring the cognitively diagnostic relationship

between items and their underlying attributes, but it does not incorporate a measure to

identify the presence or absence of such attributes in individual examinees.

Rule Space Methodology

The rule space methodology was developed by Kikumi Tatsuoka and her

associates (1982), and is comprised of two parts.  The first part involves determining the

relationship between the items on a test and the attributes that they are measuring.  Each

examinee may or may not hold a mastery-level understanding of each attribute, and in

fact, may hold a mastery-level understanding of any combination thereof.  The

combinations of attributes which are mastered and not mastered by an individual

examinee are depicted in an attribute vector, which is also referred to as a “knowledge

state.”

The description of which items measure which attributes is illustrated in a Q-

matrix.  A Q-matrix is sometimes referred to as an incidence matrix, but not in this text.

The Q-matrix is a [K x n] matrix of ones and zeros, where K is the number of attributers

to be measured and n is the number of items on the exam.  For a given element of the Q-

matrix in the kth row and the ith column, a one indicates that item i does indeed measure

attribute k and a zero indicates it does not.  For example, notice the following [3 x 4] Q-

matrix:
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€ 

Q =

i1 i2 i3 i4
A1 0 1 0 1
A2 1 0 0 1
A3 1 0 1 0

The first item measures the second and third attributes, while the second item

measures the first attribute only.  The third item only measures the third attribute, while

the fourth item measures the first two attributes.  The consultation of experts in the

measured content domain is a good approach to constructing the Q-matrix to determine if

an item measures a particular attribute.  Other possible approaches to constructing Q-

matrices include borrowing from the test blueprint or intuitively evaluating each item to

infer which attributes are being assessed.  Each element in the Q-matrix is denoted as qik

where the subscripts i and k denote the item and attribute of interest, respectively.  This

qik representation mirrors the fik, parameter in Fischer’s LLTM (symbolizing the weight

of factor k in item I, as discussed on page 9 of this chapter).  They are not exactly the

same, however, because Fischer’s fik, weight can take on values greater than unity, while

the Q-matrix entry qik cannot.  They are synonymous, however, when all of the fik weights

are dichotomized.

Next, the information provided by the Q-matrix needs to be translated into a form

that can be compared with individual observed item response patterns.  An observed item

response pattern is a vector of ones and zeros that represents how an individual

performed on a test.  For example, a response pattern of [ 0 1 0 1 1 1 ] indicates that the

individual responded incorrectly to the first and the third items on the test, but answered

each of the other four items correctly.  This comparison between the Q-matrix and
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individual observed item response patterns is accomplished by establishing a series of

ideal response patterns.  An ideal response pattern is a response pattern that is obtained

through a particular hypothetical combination of mastery and non-mastery levels of the

attributes (Tatsuoka, 1995).  Notice that the word “ideal” does not indicate a perfect

response pattern, but rather “suggests perfect fit with an underlying theory,” (Tatsuoka,

1995, p. 339).  These ideal response patterns are ascertained systematically by using

rules.

A rule is defined as “a description of a set of procedures or operations that one

can use in solving a problem in some well-defined procedural domain,” (Tatsuoka &

Tatsuoka, 1987, p.194).  Rules are determined through logical task analysis (Tatsuoka,

1990) and deterministic methods used in artificial intelligence (Tatsuoka and Tatsuoka,

1987).  A computer program is used to generate the possible ideal response patterns that

would be obtained from the application of a variety of rules.  Indubitably, both correct

rules and erroneous rules exist for any given assessment.  The consistent application of

all of the correct rules would result in correct answers for the entire test.  The consistent

application of some correct rules with other incorrect rules would result in a specific

response pattern including both ones and zeros.  If a student consistently applies a

specific combination of rules to all of the items in a test, then his/her response pattern

would match exactly the ideal response pattern produced by the computer program for

that exact combination of rules (Tatsuoka, 1995).  This provides a finite number of ideal

response patterns with which the observed response patterns can be compared.
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In order for an examinee to get an item right, s/he must possess all of the

attributes that the item measures.  This is analogous to electrical circuitry: a current can

only flow when all switches are closed.  In this analogy, a closed switch symbolizes a

mastered attribute and an electrical current represents a correct response to an item.  A

correct response to an item can only be obtained by an examinee if all attributes involved

in a give item are mastered (Tatsuoka and Tatsuoka, 1997; Tatsuoka, 1995).  Boolean

algebra can be used to explain the cognitive requirements for item response patterns

(Birenbaum and Tatsuoka, 1993).  Boolean algebra is a mathematical discipline dealing

with sets or collections of objects, such as attributes, and is commonly used in dealing

with circuits.  (For a detailed description of Boolean algebra, please see Whitesitt, 1995).

Furthermore, one specific feature of Boolean algebra, called Boolean descriptive

functions, can be used to map the relationship between the attributes and item response

patterns (Tatsuoka, 1995).  Consequently, the various attribute vectors, also known as a

knowledge states, can be determined from the set of erroneous rules used to find the ideal

response pattern that corresponds with an individual’s observed response pattern.

For instance, if an individual taking a math test knows and follows all of the

applicable rules correctly except that s/he does not know how to borrow in subtraction,

then s/he would get every item right except those that involve borrowing.  Thus, his/her

attribute vector would include a value of unity for all the attributes except the one(s) that

involve borrowing, which would be represented in the attribute vector by a zero.  Then

diagnostic information would be provided that explains this individual needs more

instruction in the area of borrowing in subtraction.
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Unfortunately, this scenario does not adequately reflect the reality of a testing

situation in its entirety. When an examinee applies an erroneous rule, s/he most likely

does not apply the same erroneous rule consistently over the entire test (Birenbaum and

Tatsuoka, 1993).   Consequently, this inconsistency results in deviations of the observed

response pattern from the ideal response pattern.  Moreover, careless errors, uncertainty,

fatigue, and/or a temporary lapse in thinking can result in even more deviations of an

observed response pattern from the ideal response patterns.  Tatsuoka (1990) states,

“Even if a student possesses some systematic error [i.e. is following an erroneous rule], it

is very rare to have the response pattern perfectly matched with the patterns theoretically

generated by its algorithm,” (p. 462).

In fact, the total number of possible response patterns is an exponential function

of the number of items.  For n items, 2n possible response patterns exist.  Fortunately,

Boolean algebra can be utilized to help reduce the overwhelming number of possible item

response patterns to a quantity more computationally manageable.

These random errors made by examinees, referred to as “slips,” can be

statistically thought of in terms of the probability of a slip occurring or even the

probability of having any number of slips occur.  Tatsuoka and Tatsuoka (1987) derive a

theoretical distribution of the slips, and call it the “bug distribution.”  The bug

distribution calculates the probability of making up to s number of slips by multiplying

the probabilities of a slip occurring for all items where one did occur and the probabilities

of a slip not occurring for all items where one did not occur, and summing across all s
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slips for all possible combinations of s slips.  This probability distribution for a given rule

R is presented in Equation (6):

  ∑ ∑∏
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where the number of slips, denoted as s, ranges from one to S, and ui equals unity when a

slip occurs on item i and is assigned a zero when it does not.  Also, n is the number of

items and t denotes the total score (Tatsuoka and Tatsuoka, 1987; Tatsuoka, 1995).

Conveniently, response patterns that result from inconsistencies in rule

applications cluster around the corresponding ideal response patterns; however, the

response variance that makes up these clusters complicates classification of the individual

examinees because it can no longer be achieved by matching up observed response

vectors exactly with the ideal response vectors.

Due to the variability of possible item response patterns, a method is needed for

classifying individuals into knowledge states (i.e. identifying their attribute vector) when

the response patterns do not reflect exactly an ideal response pattern.  To address this, the

second part of the rule space methodology deals with the construction of an organized

space for classifying the examinees’ response patterns into the knowledge state categories

that are established in the first part of the methodology.
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Once all possible knowledge states are generated from the Q-matrix, item

response theory is used to construct this classification space for identifying each of the

examinees into one of the predetermined knowledge states.  Unfortunately, the attribute

variables are unobservable constructs and cannot be represented in such a space directly.

Instead, the item response theory functions are used in combination with a new

parameter, ζ (zeta), developed by Tatsuoka (1984) to measure the “atypicality” of the

response patterns.  Values of ζ are calculated as the standardized product of two residual

matrices (where residuals are calculated as the difference between an observed and

expected value and standardization is achieved by dividing the product by the standard

deviation of its distribution).

This parameter ζ can be depicted with the item response theory person parameter

θ, which symbolizes ability level, as axes in a Cartesian space in which the knowledge

states for each of the ideal response patterns can be graphically represented (Tatsuoka,

1990), as demonstrated by Figure 1.

Figure 1: Two knowledge states in the two-dimensional rule space.

ζ

θA

B
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Notice that knowledge state A is farther left on the θ (ability) scale than

knowledge state B.  This means that knowledge state B requires a higher level of ability

to acquire than knowledge state A.  Also notice that knowledge state A is much closer to

the θ axis (where the value of ζ, the atypicality index, is zero), which means that this

knowledge state occurs more frequently than B.  Conversely, knowledge state B is farther

away from the θ axis (i.e. the magnitude of ζ is greater), which means that it is a more

atypical knowledge state.

Likewise, the various observed response patterns can be represented in terms of

each pattern’s estimated ζ and θ levels.  Furthermore, this Cartesian space can be used to

determine which ideal response pattern an observed response pattern is closest to

(Birenbaum and Tatsuoka, 1993).  Closeness between ideal and observed item response

patterns can be approximated by a distance measure, such as the Mahalanobis distance;

this metric describes the distance between an observation and the centroid of all

observations (Stevens, 1996).  Also, Bayes’ decision rules may be used to minimize

misclassifications (Birenbaum and Tatsuoka, 1993).  Bayes’ decision rules simply use

probabilities to determine which category is most likely when uncertainty is present.  The

categories are then used to determine an individual’s attribute mastery pattern.  “Once

this classification has been carried out, one can indicate with a specified probability level

which attributes a given examinee is likely to have mastered,” (Birenbaum and Tatsuoka,

1993, p. 258).

Attribute mastery patterns are represented as a vector of zeros and ones, where a

one signifies mastery of a given attribute and zeros signify non-mastery.  An attribute



18

vector, containing k (the total number of attributes) elements, is estimated for each

individual and denoted as α.  For example, if a test measures three attributes, the

estimated attribute vector for a particular examinee may be 

€ 

α j  = [ 0 1 1 ], meaning s/he

has mastered the second and third attributes, but not the first.  Attribute vectors can be

used to provide helpful diagnostic information that specifies the area(s) each examinee

needs help in.  For this example examinee, the diagnostic information would include an

indication that the student needs to work on the educational construct corresponding to

the first attribute.

 The rule space methodology allows for graphical representation of more concepts

than just the rule space (as depicted in Figure 1).  Other important features of this model

can be illustrated visually, such as probability curves, influence diagrams, and knowledge

state trees.  An influence diagram displays which items measure which attributes and

which attributes influence other attributes.  In Figure 2, the influence diagram represents

the item attribute relationships as described by the Q-matrix as well as the relationship

between the attributes.
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Figure 2: Nine items measuring four attributes.

In this figure, an arrow indicates an item measures a certain attribute, with the

arrowhead facing the item.  In this example, four items, numbers 3, 5, 6, and 9, measure

two attributes each, while the remaining items measure one attribute each.  Also, the

influence of attribute 1 on attribute 3 is represented by an arrow as well.  This indicates

that attribute 1 is a prerequisite for attribute 3.

The rule space methodology can also be used to construct a knowledge state tree.

A knowledge state tree is a very important graphical representation because it portrays

the incremental relationships between the knowledge states.  This is particularly useful



A1

A2

A3

 



 





A4
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because it draws out how to improve from one knowledge state to a more mastered

knowledge state (Tatsuoka and Tatsuoka, 1997).  For example, see Figure 3.

Figure 3: A tree representing eight knowledge states.

Mastery
State

Cannot do
A3

Cannot do
A4

Cannot do
A3 & A4

Cannot do
A1, A2,

A3, &A4

Cannot do
A2 & A4

Cannot do
A2, A3 &

A4

Cannot do
A1, A3 &

A4

θ = +3

θ = 0

θ = -3

3.1

2.21.9

4.9
3.4 2.0

3.8
2.6
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In traditional testing, higher scores would be assigned to individuals in the

knowledge states that are higher in the figure.  Knowledge states lower in the figure

represent lower traditional scores.   Notice the knowledge states “Cannot do A3” and

“Cannot do A4” are next to each other.  In a traditional testing situation, individuals

within both of these knowledge states would receive the same score.  Alternatively, the

rule space method allowed these examinees to be provided more specific information

about their abilities.

Obviously, it is possible for an examinee to lack more than one attribute.  This

tree is useful because it shows the order in which the non-mastered attributes need to be

learned.  For instance, if a student cannot do attribute 1, 3, or 4 (i.e. his/her attribute

vector is [0, 1, 0, 0]), then the diagram dictates that s/he should next move to the

knowledge state “Cannot do A3 & A4.”  Therefore, the student should learn attribute 1

next.  Then there is a choice to move to either state “Cannot do A3” or “cannot do A4.”

In such a situation, the next appropriate knowledge state is the one with the shortest

Mahalanobis distance (Tatsuoka and Tatsuoka, 1997).  In this case, the next knowledge

state to achieve would be “cannot do A3” with a Mahalanobis distance 3.4; so the student

needs to learn attribute 4.  Then, once attribute 3 is mastered, the student will accomplish

the knowledge state total mastery.  Tatsuoka and Tatsuoka (1997) suggest programming

this method of determining an appropriate path for instruction in the form of a computer

adaptive tutor for remedial instruction.  This is revolutionary because it embarks on the

combination of the rule space method of diagnostic assessment with computer adaptive
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assessment to provide immediate feedback and immediate individualized instruction in

the area(s) the examinee needs most.

The rule space methodology is revolutionary and advantageous in many ways, but

there is always room for improvement.  One drawback is that the rule space methodology

does not take into account a way to evaluate the relationships between the items and the

attributes.

The Unified Model

DiBello, Stout, and Rousses (1995) based their new model, named the unified

model, on the rule space method.  They attempted to improve on one of the underlying

ideas of the rule space approach.  In the unified model, the source of random error is

broken down into different four types of systematic error.  In the rule space model, all of

these would be considered random slips.

They examined the possible sources of random errors and categorized them into

four groups.  Hence, while there is only one type of random error in the rule space model

(slips) there are four sources of aberrant response variance in the unified model.  First,

they explain that strategy selection is a source of response variation, because an examinee

may answer an item using a different strategy than the one assigned in the Q-matrix.

Second, completeness of the Q-matrix is considered an important issue.  An item may

measure an attribute that is not listed in the Q-matrix.  For example, a worded math

problem includes a verbal component; if the Q-matrix does not contain a verbal attribute,

then the Q-matrix would be considered incomplete.  Third, the unified model takes
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“positivity” into account.  Positivity addresses inconsistencies that arise when students

who do not possess a certain attribute happen to respond correctly to an item that

measures the attribute, or when students who do possess a certain attribute do not apply it

correctly and respond erringly to an item measuring the possessed attribute.  Positivity

takes on a high value when individuals who possess an attribute use it correctly, while

students who lack an attribute miss the items that measure it.  The less this is the case, the

lower the value of positivity.  Lastly, a category remains for random errors that are not

caused by any of these other three issues.  These are called slips and include mental

glitches such as finding the correct solution to a problem and then bubbling in a different

multiple-choice option.  Notice the term “slips” is used more generally for the rule space

approach than the unified model.

DiBello, Stout, and Rousses (1995) introduce a new parameter for dealing with

the issues of strategy choice and incompleteness of the Q-matrix called the latent residual

ability (confusingly, this is denoted as θj, but is different than the IRT ability level θ j).

The unified model is the first to include such a parameter.  The latent ability space

consists of αQ, which is the part addressed in the Q-matrix, and αb, which is the

remaining latent ability not included in αQ.  This parameter θ j is intended to measure

underlying construct αb, while αQ is measured by the parameter αj.

One might ask, why not simply add more attributes to the Q-matrix to account for

these issues?  More attributes mean more attribute parameters.  While additional

parameters may allow for enhanced distinctions and alleviate certain classification

problems caused by strategy choice and incompleteness of the Q-matrix, these added
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parameters would most likely complicate the measurement process more than they would

benefit it.  More parameters require a greater degree of complexity in the estimation

procedure.  Also, an increase in the number of attribute parameters to be estimated

requires an increase in the number of items on the test to obtain acceptable reliability

(DiBello, Stout, and Rousses, 1995).  But this may not be practical when so many

educators feel test administration is already too long.  For the sake of parsimony,

including additional parameters is only advantageous when there is a real measurement

interest in assessing the mastery/non-mastery of those attributes.  Hence, the inclusion of

these issues in a model without having to add more attribute parameters is optimal, and

this is what DiBello, Stout, and Roussos (1995) have accomplished.  The unified model is

illustrated in Equation (7):
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where αjk denotes examinee j’s mastery of attribute k, with a one indicating mastery and a

zero denoting non-mastery.  Also, qik is the Q-matrix entry for item i and attribute k,

andθj is the latent residual ability and P(θj) is the Rasch model with the item difficulty

parameter specified by the subscript of P.  The parameter πik is the probability that person

j will correctly apply attribute k to item i given that person j does indeed posses attribute

k; mathematically, this is written as )11( === jkijkik YP απ  with Yijk equaling unity when

correct application of the attribute is present.  Lastly di is the probability of selecting the

Q-based strategy over all other possible strategies.
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The unified model includes a large number of parameters to deal with a plethora

of psychometric elements.  Having such an amplified set of parameters in the model is

both a blessing and a curse.  It is a precarious balance that must be met between

improving accuracy through the inclusion of more parameters and the issue of statistical

identifiability of the many parameters in the model.  Jiang (1996) demonstrated that, in

fact, the 2Ki+3 item parameters contained in the unified model are just too many to be

uniquely identified.

This model is named the unified model because it uses a deterministic approach to

estimating knowledge state classification, and yet it also takes into account random

errors.  Hence, it unifies both deterministic and stochastic approaches.  The unified model

is advantageous in that it takes in to account the necessity for assessing examinees with

respect to underlying attributes, as well as the requirement for examining the relationship

between the items and the attributes rather than just one or the other.  Some other

advantages of the unified model include the innovative use of the latent residual ability θj

to help avoid the problems associated with too many latent classes being incorporated

into the assessment process (a suitable alternative to the addition of superfluous attribute

parameters) and the ability for the model to handle the use of multiple solution strategies

by examinees (DiBello, Stout, and Rousses, 1995).  In order to apply the unified model in

diagnostic assessment, the item parameters must be estimated, which is to say, the model

must be calibrated.   However, the model lacks practicality in this sense because the

parameters involved are not uniquely statistically estimable (Jiang, 1996).
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The Fusion Model

The fusion model was based on the unified model (Hartz, Roussos, and Stout,

2002) which, in turn, was based on Tatsuoka’s rule space methodology (DiBello, Stout,

and Roussos, 1995).  The fusion model retains the advantages of the unified model while

reducing the number of parameters involved so that they are statistically identifiable.  The

unified model has 2Ki+3 parameters for each item, while the fusion model only has K+1

(where K is the number of attributes).

Fischer’s LLTM does not estimate individuals’ mastery level of each attribute.

The Rule Space model does not evaluate the relationship between the items and the

attributes.  The Unified Model satisfies both of these needs, but does not have statistically

estimable parameters.  The fusion model simplifies the unified model so that the

parameters may be estimated.  The fusion model was selected as the cognitive analysis

model of choice for this study due to the fact that it includes all three features described

by Hartz, et al. (2002) as crucial for a successful cognitive diagnosis model, including (1)

the estimation of examinees’ attribute mastery levels, (2) the ability to relate the items to

the attributes, and (3) statistical identifiability of the model's parameters.  The item

response function for the fusion model is illustrated below in Equation (8), as described

by Hartz, et al. (2002):
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where
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Pci θ j( )  = The Rasch model with difficulty parameter ic .
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Yijk  = 1 when examinee j correctly applies attribute k to item i, and 0 otherwise.

jkα  = 1 when examinee j has mastered attribute k, and 0 otherwise.

ci = the amount the item response function relies on jθ  after accounting for the

       attribute assignments in the Q-matrix.

Also, the attribute vector for individual j is denoted as 

€ 

α j , and jθ  is the residual ability

parameter, which deals with content measured by the test that is not included in the Q-

matrix.

Parameters

The fusion model introduces many new parameters not present in any other

model; therefore a brief explanation of these parameters would be appropriate.  First the

three item parameters will be described, and then the two person parameters will be

explained.  Last, the attribute parameter will be discussed.

The parameter *
iπ  equals the probability of correctly applying all attributes

required by item i given that the individual possesses all of the required attributes for the

item i.  As a result, *
iπ  reflects the difficulty of item i and is referred to as the Q-based

item difficulty parameter.  It affects a person’s capacity to answer the item correctly

despite his/her possession of all the involved attributes.  Just as with the item difficulty of
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classical test theory, the values of *
iπ  must remain between zero and unity, and a high

value indicates “easiness” rather than “difficulty.”  Next, the parameter *
ikr  represents the

proportion of the probability of obtaining a correct response when the examinee does not

have the required attribute with the probability of responding correctly to the item when

the required attribute is possessed by the examinee.  Hence, *
ikr  is considered the

discrimination parameter of item i for attribute k.  This parameter is described as the

penalty for lacking attribute k.  A high *
ikr  value signifies that attribute k is not important

in producing a correct response to item i (Hartz, 2002, Hartz, et al., 2002).  This

parameter is a ratio of probabilities, and its values also remain between zero and unity.

Third, the parameter ci deals with the item response function’s reliance on the residual

ability parameter jθ , which measures the examinee on constructs that are beyond the

scope of the Q-matrix.  Therefore, the ci parameter is the completeness index for item i.

This parameter’s value remains between zero and three, with a high value meaning the Q-

matrix is complete and therefore a correct response to the item does not rely heavily on

jθ .  In sum, a good item would have a high *
iπ , a high ci and a low *

ikr .  Each item has

one *
iπ  parameter, one ci parameter, and a *

ikr  parameter for each attribute that the given

item measures.

The fusion model estimates two types of parameters for the examinees.  The first

is a vector denoted as jα  which identifies the attributes which have been estimated as

mastered by examinee j.  The last parameter specific to the fusion model is the residual
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ability parameter jθ .  (Recall that though they are identically denoted, it is not the same

as the theta parameter present in typical IRT models.  Rather this parameter is

comparable to the jθ  parameter in the unified model.)  This jθ  parameter measures the

“left over” ability construct required by the test but not included in the Q-matrix.  This

can be thought of as a measure of “higher mental processes” (Samejima, 1995, p. 391), a

measure for dealing with multiple solution strategies, or merely a “nuisance parameter,”

(DiBello, Stout, and Roussos, 1995, p. 370).  The inclusion of this parameter is important

because it allows us to acknowledge the fact that Q-matrices are not complete

representations of what is required by an exam (Hartz, 2002; DiBello, Stout, and

Roussos, 1995).

The fusion model also consists of one parameter for each attribute measured in

the assessment. This parameter is denoted as pk and is the cutoff value for attribute k.

These values are used to dichotomize the mastery/non-mastery assignments of each

examinee, because the values in the attribute vector jα  are continuous rather than

dichotomous.  The continuous values in the attribute vector that are greater than or equal

to pk are assigned the status of mastery for attribute k; the remaining values are assigned

the status of non-mastery for that attribute.

Parameter Estimation

Like any model, the fusion model requires an estimation procedure for the

parameters involved.  The fusion model has several different parameters that must be

estimated simultaneously, and therefore requires a powerful procedure for calculating
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them.  The Markov Chain Monte Carlo (MCMC) method is a versatile estimation

procedure that has become an important tool in applied statistics (Tierney, 1997).

MCMC is used in parameter estimation in the fusion model because it can elegantly

handle the otherwise arduous, perhaps even impossible task of simultaneously estimating

the K+1 item parameters as well as the K entries in the attribute vector of examinee

parameters.

MCMC Estimation.  MCMC looks at the probability of the next observation

assuming it depends solely on the current observation.  Hence, this method is based on a

Bayesian framework.  The field of Bayesian statistics is based on Bayes’ theorem and

uses a prior distribution, which involves known information about the parameters of

interest, to estimate posterior distribution, which is the “conditional probability

distribution of the unobserved quantities of ultimate interest, given the observed data,”

(Gelman, et al., 1995, p. 3).  Bayesian techniques are an advantageous approach to

inferential statistical analyses in two important ways.  First, the use of prior information

utilizes known information about the relationships between the variables involved while

the data provides information about unknown characteristics of the variables’

relationships.  For instance, positive correlations exist between examinee parameters, so

it would be appropriate not to waste this information during estimation (Hartz, 2002).  A

Bayesian framework allows for this sort of flexibility in the prior distribution of

parameters (Hartz, 2002).  And second, the prior distributions do not untenably influence

the posterior distributions (Hartz, 2002).  In sum, a Bayesian framework allows the
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incorporation of important information already known about the item parameter

distributions, but is not adversely affected when such useful information is not available.

(For more information regarding Bayesian analytic methods, please see Gelman, et al.,

1995.)

To understand how MCMC estimates information about future observations or

states, it is easiest to first consider a simple case involving a dichotomous random

variable.   At any given time, this variable could take on a value of zero or unity.  A

Markov Chain deals with such a variable over various mathematical states.  Consider the

probability of achieving a second state given the initial state.  This probability can be

represented by a matrix with the number of rows and columns matching the number of

possible states.  When only looking at two states, the transition matrix from state one to

state two may be illustrated by the below probability matrix below:
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p00= the probability of the variable taking on a value of zero in the first state and

zero in the second state.

€ 

p01= the probability of the variable taking on a value of zero in the first state and

one in the second state.

€ 

p10= the probability of the variable taking on a value of one in the first state and

zero in the second state.
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11p = the probability of the variable taking on a value of one in both states.

Regardless of whether the variable takes on a value of zero or one in either state, this

matrix can be used to determine the probability of the transition to state two.  A bit of

matrix algebra can be used to determine the probability of obtaining a value of one or

zero for the second state by multiplying the transition matrix of probabilities and the

vector of probabilities of the initial state as illustrated in Equation (9).
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Next, consider the probability of observing state 3.  The probability of observing a

zero or a one for the third state can be similarly determined, as outlined in Equation (10).
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Likewise, the probability vector for state 4 or even state 194 and so on can

continue to be determined by raising the transition matrix to greater and greater

exponents and then multiplying by the vector of probabilities of the initial state.

Consequently, as the number of iterations increases, the complexity of the calculation

also increases, but more importantly, the reliance on the initial state decreases and the
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resulting probability matrix depends more on the transitional matrix (Smith, 2003).  As

the number of iterations in the chain gets increasingly large, the values in the matrix

eventually converges to a single matrix where every row is identical and the values of

that row represent the posterior distribution.

This posterior distribution is then used, along with a random number generator, to

determine the next state from a current state.  A random number between zero and unity

is generated from a uniform distribution and this value is compared with the values of the

probabilities in the posterior distribution to determine the next state.  There is an array of

algorithms for this process, and further details are presented in the following section.

The idea here can be extended to variables that can take on polytomous

observations, rather than just zeros and ones as illustrated above.  MCMC estimation can

even be extended to continuous rather than discrete variables.  In the continuous case, a

“transition kernel” is used instead of a transition matrix (Smith, 2003); a transition kernel

is in the form of a function rather than a matrix.

The estimation is referred to as MCMC because the property of a sufficiently long

Markov Chain is that the values will converge to a singe matrix.  The Monte Carlo

element of MCMC estimation describes how the iterations of the chain are randomly

selected from the distribution of possible states, which is represented by the rows in the

matrix.  For more information on MCMC methods and MCMC estimation, please see

Smith, 2003.
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The Metropolis–Hastings Algorithm.  A variety of algorithms for implementing

MCMC estimation are available, and the oldest and most widely used is the

Metropolis–Hastings (Tierney, 1997). The Metropolis–Hastings (M-H) algorithm was

conceived by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953, and was

then generalized by Hastings in 1970 (Chib and Greenberg, 1995).  As mentioned earlier,

the transitional probabilities are used in combination with a random number generator to

determine the mathematical state of the next iteration in the MCMC chain.  The M-H

algorithm uses the transition kernel (or matrix for the discrete case) to produce a

candidate for the next state, rather than automatically accepting the state determined by

the above mentioned process.  The added precaution of examining this state as a

candidate is needed because it is possible that there is a propensity to move from one

state to another more frequently than vice versa (i.e. the transition from state A to state B

occurs more often then from state B to state A), and this lack of “reversibility” must be

taken into account (Chib and Greenberg, 1995).  So, a comparison is made to reduce the

moves from state A to state B to balance out an MCMC process that would otherwise be

“lop-sided” and thus not satisfy the required condition of reversibility.  This comparative

step can be thought of as a filter to always accept moves from state B to state A, but to

only accept moves from state A to state B with a certain (non-zero) level of probability

(Chib and Greenberg, 1995).

Gibbs Sampling.  Gibbs sampling is a special case of the M-H algorithm, which

was introduced to the statistical community by Gelfand and Smith in 1990 as an approach
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for fitting statistical models (Gelfand, 1997).  When estimation is required for multiple

parameters, Gibbs sampling helps simplify the process of sampling the candidates by

allowing it to focus on one component at a time.  In short, the process examines the

candidate vector of parameters to be estimated and accepts the candidate with the

applicable probability based on the first parameter (say for example the item parameter),

then obtains the next candidate and accepts it with the same probability based on the

second parameter of interest (say this time it is the examinee parameter).  The advantage

of Gibbs sampling is that it takes a “divide-and-conquer” approach to estimating the item

and examinee parameters simultaneously (Patz and Junker, 1997, p. 7).

This was a brief primer describing the estimation procedure used to calculate the

fusion model parameters.  For a more comprehensive description of the statistical

techniques or backgrounds regarding the use of the M-H algorithm and/or Gibbs

Sampling in the context of MCMC estimation, please see Chib and Greenberg, 1995.
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Computerized Adaptive Testing

Wide scale assessment must include items able to gauge the abilities of a broad

range of examinees, which unfortunately bores the high ability examinees by asking too

easy items and frustrates the lower ability examinees with questions that are too hard.

Needless to say, this is not an extremely efficient approach to individualized

measurement.  Computerized adaptive testing (CAT) avoids this issue by honing in on

each examinee’s ability estimate and asking items that would be informative at his/her

level and omitting items that would not be helpful in the estimation process.  CAT retains

the advantages of group administration while adopting the advantage of individualized

assessment (Wainer, 2000).  Other advantages of CAT include test security, individual

test-takers working proficiently and at their own pace, the absence of physical answer

sheets, the possibility of immediate feedback, the ease of administering experimental

items, and the variability of item formats available in the computerized interface (Wainer,

2000).

The history of adaptive testing precedes the ubiquity of the personal computer.  In

the early 1970’s new approaches such as flexilevel testing (Lord, 1971a) and multi-stage

testing (Lord, 1971b) were being explored as means of directing a test’s questions toward

the ability level of the individual examinee and avoiding superfluous items.  Lord’s

research in this area is often credited as pioneering the field of adaptive testing (van der

Linden and Pashley, 2000).  Upon the influx of inexpensive computing power, personal

computers became capable of being programmed to administer a test the way an

individual examiner would, that is to say, directing the line of questioning towards the
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examinees true ability level.  CAT has infiltrated the testing arena throughout the

country.  Large-scale tests that have implemented a computer adaptive version include

the Computerized Placement test, the Graduate Record Exam, the Armed Services

Vocational Aptitude Battery, as well as licensure exams for individuals in the medical

industry (Meijer and Nering, 1999).

The aim of CAT is to construct an optimal test for each examinee (Meijer and

Nering, 1999), and as a result, different examinees respond to a different set of items.  In

order to consistently estimate ability levels across examinees’ different administrations of

items, CAT employs the field of item response theory (IRT), an area discussed at the

beginning of Chapter Two.

CAT algorithms consist of three steps: (1) selecting an initial item, (2) continuing

to select all subsequent items, and (3) ending the testing process (Thissen and Mislevy,

2000).  Consequently, CAT has a multitude of specialized foci, including item bank

development, item selection procedures and ability estimation procedures, which in turn

bring up additional issues such as test security and reliability (Meijer and Nering, 1999).

The emphasis of this opus, however, is on an approach to optimized item selection.

Item Selection

An important element of CAT administration is determining which items should

be presented next given the current estimate of the examinees ability level. The reason

item selection is an important process in CAT is because it allows item administration to

adaptively correspond to the examinee’s ability estimate (Meijer and Nering, 1999).
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The two most common selection procedures to determine the best item to

administer next are “maximum information” and “maximum expected precision”

(Thissen and Mislevy, 2000).  The maximum information approach selects an item that

maximizes the Fisher information function, presented in Equation (11), for the given

ability estimate jθ̂ :
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[Pi′( ˆ θ j )]
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Pi( ˆ θ j )[1− Pi( ˆ θ j )]
                   (11)

where ( )jiP θ̂  is the probability of a correct response by examinee j on item i given the

current ability estimate jθ̂ , and ( )jiP θ̂′  is the first derivative thereof.  The method of

maximum expected precision is a Bayesian approach that seeks to minimize the variance

of the posterior distribution.  Other possible item selection procedures include Owen’s

(1975) Bayesian item selection, Veerkamp and Berger’s (1997) weighted information

criteria, and Davey and Parshall’s (1995) posterior weighted information.  Other

approaches based on variations of the maximum information procedure use Kullback-

Leibler (K-L) information rather than Fisher information in item selection (see Chang and

Ying, 1996; Eggen, 1999; Xu, et al., 2003).  More details regarding K-L information are

provided below.  Item selection in this research entails the maximum information

approach using both Fisher information and K-L information, as well as another

information approach, Shannon Entropy.

While utilizing an item selection method that provides the most information about

the given examinee is important, item selection does not solely depend on which item is
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the best in terms of ability estimation.  Theoretically, the next item selected is the one that

can best aid in the ability estimation, but in reality, practical considerations must also be

taken into account, such as content balancing and items exposure control (Wainer and

Mislevy, 2000).  In the context of high-stakes CAT, there are three competing goals in a

test’s construction:

(1) Select items that measure the examinee’s ability as quickly, efficiently and

accurately as possible.

(2) Ensure each administration of the test measures the same combination of

content domains and item formats.

(3) Maintain the test security by controlling the rates of each item’s exposure

across all administrations (Davey and Parshall, 1995; Stocking and Lewis,

2000).

Generally, satisfying one of these goals imposes a diminution of the other two (Stocking

and Lewis, 2000).  If items become compromised, they no longer accurately measure all

examinees’ abilities equitably.  As a result, it is appropriate to administer items that are

sub-optimal for a given ability estimate when the optimal item happens to be selected so

frequently that they may be compromised.  Therefore, the precision of measure is

sometimes sacrificed for the sake of item security.  But in the end, the goal is to obtain an

accurate estimate of the examinee’s ability with a finite number of items and in a short

enough amount of time to minimize the occurrence of fatigue.

Methods for controlling items exposure rates have been developed by Sympson

and Hetter (1985), Davey and Parshall (1995), Stocking and Lewis (1998), Chang and
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Ying (1999), and Parshall, Harmes and Kromrey (2000), just to name a few.  Clearly, the

issue of item exposure control is important in the context of CAT.  So, accurately

approximating individuals’ ability levels while maintaining item exposure control as well

as content balancing are significant goals in CAT administration.  Ergo, an item selection

procedure is needed that can simultaneously manage all of such issues.  Fortunately, the

shadow test approach is capable of handling this challenging endeavor.  The shadow test

technique can take into account item exposure control along with content balancing and a

plethora of other constraints in the item selection process.

The Shadow Test

The idea of shadow testing was proposed by van der Linden and Reese in 1998.

Shadow testing is a mode for test assembly that utilizes linear programming (LP) to

incorporate constraints into the assembly process.  It is an iterative process in which an

ideal “shadow” test is formed before the administration of each item in an examination.

A shadow test is a test that is not administered in its entirety to the examinee.

Rather, a new shadow test is constructed before the administration of each item, and a

whole test had the same number of shadow tests as it has total items.  A shadow test must

be optimal at the given estimate level while complying with all of the specified

constraints, and therefore any item selected from the shadow test will maintain such

properties and be a good item for the current estimate level (van der Linden and Chang,

2003).  Each shadow test must also contain any items already administered in the overall

test.  The best item on the shadow test (that has not yet been administered) is then

selected as the next item to be administered to the examinee, and unused items are



41

returned to the pool.  The response from this item is then used in the process of

formulating the next shadow test.  The iterative process of the shadow test for a four-item

test is illustrated in Figure 4.

Construct Shadow Test Administer Item

Figure 4: The iterative process of the shadow test approach.

The notation “item *” represents an item selected to be in the shadow test that has

not already been administered; it is the best item among these that is selected to be the

next item given to the examinee.  At each step, a full-length shadow test is constructed,

each of which preserve three important requirements.  First, each shadow test meets all of

the constraints; second, it must include all previously administered items; third, it has
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


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maximum information at the current ability estimate (van der Linden, 2000b).  “The last

shadow test is the actual adaptive test and always meets all constraints,” (van der Linden,

2000b, p.33).

The application of this approach results in two major advantages.  First, the items

actually administered in the adaptive test will certainly follow the constraints because

each of the shadow tests meets these specifications.  Second, the adaptive test will

converge optimally to the true value of the estimator because the shadow tests are

assembled to be optimal for the current estimate level, and in turn, each selected item is

the optimal one from that shadow test (van der Linden and Chang, 2003).

A shadow test is constructed based on an objective function and a series of

constraints.  Frequently, the objective function involves maximizing the Fisher

information function (van der Linden and Reese, 1998; van der Linden, 2000b; van der

Linden and Chang, 2003).  With respect to the constraints, test-makers have a wide

variety from which to choose (for an extended list, see van der Linden and Reese, 1998,

van der Linden, 2000a or van der Linden, 2000b).  There are three main types of

constraints, including (1) those dealing with categorical item characteristics, (2) those

about quantitative features of the items, and (3) those for inter-item dependencies (van

der Linden, 2000a; Veldkamp and van der Linden, 2000).  The test’s administrators may

choose any combination of these to include in the list of constraints.  Some examples of

typical constraints are presented below.

For a fixed length test, the total number of items would be a necessary constraint

to include, and for the context of diagnostic assessment, the number of items measuring
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each attribute would also be an appropriate constraint.  The manual for the Arpeggio

software (Stout, et al, 2002) requires each attribute be measured by at least three items, so

this would need to be mathematically specified in the list of constraints (Hartz, Roussos

and Stout, 2002).  Another important constraint deals with content balancing.  Each

examinee should receive the same number of items in each content area (Green, et al.,

1984) and this can be easily taken into account by a mathematical constraint.  Item

exposure control is another constraint that is beneficial to the test construction process.  A

constraint dealing with exposure control can be included by merely limiting the

frequency of an item’s administration (van der Linden and Reese, 1998) or as involved as

using the alpha-stratified approach (van der Linden and Chang, 2003).  Theoretically, any

aspect of a non-adaptive test can be incorporated into the shadow test procedure as long

as it can be mathematically represented by a constraint (van der Linden, 2000b).  The

mathematical constraints involved in this study are listed in Chapter Three.  For more

information regarding possible constraints, see Stocking and Swanson (1993) or van der

Linden and Reese (1998).

In order to formulate a shadow test that is optimal with respect to the objective

function and that also obeys the specified constraints, the field of linear programming

(specifically, integer programming) must be utilized.  A computer software program

called CPLEX (ILOG, 2003) is used to solve the linear programming problem of finding

the best solution to the objective function under the given constraints.  Typically, the

solution is found using the branch-and-bound method (van der Linden, 2000b).  (Please

note that because CPLEX is a proprietary program and hence the source code is not
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available to the public, there is no way to guarantee that this is indeed the way that

CPLEX finds the solutions.)

The branch-and-bound method is most easily understood in graphical form.

Figure 5 illustrates the branch-and-bound method for the simple case of selecting two

items from four possible items.  The four possible items are represented in parentheses as

follows: (item one, item two, item three, item four).  A one indicates that the item will be

selected and a zero indicates that it will not.  In this example, two of the four items are to

be selected, so ultimately there shall be two ones and two zeros representing which two

of the four items have been selected.  An asterisk indicates that a decision has not yet

been made about that item.

Figure 5: The branch-and-bound method.

No Items selected yet.
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45

The first decision is whether or not to include the first item or not, resulting in two

possible branches.  Each of these branches splits into two more branches to decide

whether to include the second item or not.  For example, (0, 1, *, *) indicated the first

item is not selected, the second item is selected, and a decision has not yet been made

about the remaining two items.  This branching continues until all of the possible items

have been considered.  When a particular branch includes a set of items that do not obey

the specified constraints, then that branch is no longer explored, that is to say, it is

“bound” back and not allowed to “grow” any more.  For instance, the branch (0, 0, 0, *)

and (1, 1, 1, *) were both “bound” because they would not have yielded a total of two

selected items.

These types of problems are often referred to as “knapsack” problems because

they can be thought of in terms of trying to select certain objects to be put into a knapsack

for a trip.  The packer wants to select the best possible combinations of things to put in

the knapsack.  Most likely, one would select just a few objects from a variety of

categories when packing the knapsack.  In this analogy, the knapsack is the shadow test

and all of the possible objects to choose from are contained in the item bank.  The content

categories of the items may be thought of as the different categories of the objects to be

including.  Any time a branch in the algorithm is encountered that does not correspond

with all of the requirements in the list of constraints, that part of the branch is abandoned.

Once all of the possible combinations of items which obey the list of constraint are

determined, the objective function is used to select the best combination.  For example, if

the objective function is to maximize Fisher information, then the Fisher information is
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calculated for every combination of items that obey all of the constraints, and the

combination with the greatest Fisher information is selected as the best combination of

items.  This winning combination then becomes the Shadow Test.  For more information

about linear programming or the branch-and-bound method, see Bertsimas and Tsitsiklis

(1997) or Hawkins (1988).

Once a shadow test is assembled, the best item with respect to the attribute vector

estimate is selected from the shadow test to be the next item administered to the

examinee.  Two strategies, Shannon Entropy and Kullback-Leibler Information, are

employed for the selection process as described in Xu, Chang, and Douglas (2003).

Shannon Entropy.  Shannon Entropy was introduced in 1948 as a measure of

uncertainty from a probability standpoint (Harris, 1988).  Shannon Entropy is an indicator

of a random variable’s uncertainty or disorder.  It is a nonnegative concave function of

the random variable’s probability distribution.  In the context of this paper, the goal is to

minimize Shannon Entropy; that is to say, it is more desirable to have less uncertainty.

Shannon Entropy is described by Equation (12):
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where iπ  is the probability that the random variable of interest, call it Y, takes on a

particular value yi, and π  is the probability vector containing the iπ ’s for all possible

values of yi (Xu, et al., 2003).  In the context of diagnostic assessment, where we are
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interested in estimating attribute vectors, the function for Shannon Entropy becomes

Equation 13, as described by Xu, et al. (2003):
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where Xi is an item in the bank, 

€ 

α c is the possible candidate attribute vector generated by

the ith item, and 

€ 

π n−1is the posterior probability distribution of a candidate pattern after n-

1 items have been administered.

Kullback-Leibler Information.  Kullback-Leibler (K-L) information was

introduced in 1951 as a distance measure between probability distributions (Kullback,

1988).  It is used as a measure of discrimination between a true distribution and another

distribution (Kullback, 1988).  More recently, K-L information has be used as a measure

of global information for the purpose of item selection in IRT (Chang and Ying, 1996)

and as an index in the item selection process in diagnostic assessment (Xu, et al., 2003).

The definition of K-L information for continuous probability distributions is given by

Equation (14).
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For the cognitive diagnosis context, we want to use K-L information as an item

selection criterion.  The integral becomes a sum when the variables are discrete; then the
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sum is taken across all possible attribute patterns.  Thus the function becomes Equation

(15):
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where α̂  is the currant estimate for the attribute vector and cα  is the possible candidate

attribute vector generated by the ith item (Xu, et al., 2003).  This yields an information

index relating our current attribute vector estimate with the possible attribute vector

estimate resulting from the administration of the next item i for every possible remaining

item.  The item with the largest value of ( )α̂iK  is then selected as the next item.

K-L information is beneficial in the context of cognitively diagnostic assessment

because it easily lends itself to the categorical case, unlike alternative forms of

information, such as Fisher information.  Recall from Equation (11) that Fisher

information requires a derivative function, which does not exist for a discrete random

variable.

The main concern of a computationally intensive selection procedure like K-L

information is an increase in computation time.  Because examinees are waiting for the

item selection procedure during administration, it is imperative that the procedure occurs

in a timely fashion.  Cheng and Liou (2000) compared the item selection procedures

involving maximizing Fisher information and K-L information and noted that K-L

information took longer than Fisher information based algorithms, especially as the size

of the item bank increases.  Although slower than Fisher information-based algorithms,

the use of the K-L information procedure for item selection was still quite fast.  In Cheng



49

and Liou’s (2000) study, item selection using K-L information took a quarter of a second

on a Pentium II 266 MHz PC.  When Eggers (1999) and Chen, Ankenmann, and Chang

(2000) compared the use of K-L information with Fisher information in the context of

item selection, they found that K-L information performed as well as Fisher information,

if not better.

In this study, the minimization of Shannon Entropy and the maximization of K-L

information are each used to select the best item from the Shadow Test with respect to the

attribute vector.  The procedure of this study is explained in the following chapter.
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CHAPTER THREE: METHODOLOGY

The research design is comprised of two major sections.  The first part deals with

the application of the fusion model in analyzing examinees’ results on an existing exam

in order to provide diagnostic feedback from an exam that would otherwise provide none.

The rationale and advantages of this have been previously explained.  The second major

segment deals with incorporating computerized adaptive testing technologies to

adaptively assess examinees from a diagnostic standpoint.  This section compares three

procedures for administering a computerized adaptive diagnostic assessment, one of

which employs the method of shadow testing to select items based on optimal estimates

of both the attributes and the conventional IRT ability parameter simultaneously.

PART ONE: Analyze an Existing Test in a Cognitive Diagnosis Framework

This study applies the Fusion model to a pair of assessments required by the

Texas Education Agency (TEA).  The first dataset of interest involves results from the

third grade Texas Assessment of Academic Skills (TAAS) administered in the spring of

2002.  The second dataset is from the spring 2003 administration of the eleventh grade

Texas Assessment of Knowledge and Skills (TAKS).  Both the third grade and eleventh

grade tests contain a reading section and a math section.  First, a simple random sample

of two thousand examinees was obtained from the approximately three hundred thousand

students who took each exam.  The next requisite for conducting a diagnostic analysis

was to obtain a Q-matrix to represent the attributes measured by the items.  Three Q-

matrices were developed for both portions of the eleventh grade TAKS and third grade

TAAS.  One of the Q-matrices is based on the test blueprint provided by TEA, the second
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is based on the attribute assignments provided by content experts at TEA, and the

remaining Q-matrix is based on an intuitive evaluation of the test items by the author.

These three approaches to Q-matrix construction reflect different possible methods a

psychometrician might adopt if s/he desired to conduct a cognitively diagnostic analysis.

The analyses are then performed using the fusion model software program

Arpeggio (Hartz et. al, 2002).  This procedure involves a series of three major steps.

First, the Arpeggio program is executed and then the estimates for the mastery

proportions for each of the measured attributes are examined.  It is important these be

accurately estimated with a given level of confidence because they are used as the cut-off

values for the attribute mastery assignments.  When these parameters have been

determined to be estimable with in a certain acceptable range (the ninety-five percent

confidence interval width must be no greater than three quarters of the overall possible

range for the parameter), a stepwise reduction procedure is used to update the Q-matrix to

be more useful.  This stepwise reduction procedure examines the upper confidence

interval bound of the attribute-based item discrimination parameter *
ikr .  If this value is

too high (i.e. above 0.9), then the corresponding Q-matrix entry is removed on the

rationale that a high Q-based item discrimination parameter indicates that the designated

attribute is not important in obtaining a correct response.  (Recall that a low *
ikr  is

desirable.)  If any of the fusion model item parameters are determined to not be

estimable, additional steps are implemented which include the execution of an application

designed for dealing with this issue.  Lastly, additional applications are used to evaluate

the model’s fit in the analysis.  More specific details on the process involved in using the
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Arpeggio program can be found in Hartz et al., 2002.

The results of the analyses may then be examined to determine the

appropriateness of the application of the fusion model to this data.  The effectiveness of

this model is taken into consideration by examining the proportion of the examinees that

are accurately classified.

This portion of the study’s design compares the effects of using different Q-

matrices in the cognitively diagnostic analysis.  This highlights an important issue

because of the subjective nature of Q-matrix development, which is a buttressing step in

the process of diagnostic assessment.  The use of a variety of Q-matrices also addressed

the fact that the differing structures possible for a Q-matrix, namely simple versus

complex structure, may influence the results.  The two tests chosen for the analysis

exhibit varying levels of complexity; this incorporates a range of possible realistic

circumstances.

The portion of the research provides information dealing with the application of a

cognitive diagnostic model to an existing mandatory standardized assessment.  Some

possible future research directions might be to include the rule space methodology in

such an analysis or to cross-validate the resulting attribute vectors of the examinees,

perhaps by means of interviewing a portion of the sampled students or their teachers.
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PART TWO: Adaptively Enhancing the Assessment Process

This part of the research study explores a method for selecting items in a

computerized adaptive assessment based on a cognitive diagnosis framework.  This

portion of the project utilizes a simulation of a computerized adaptive assessment.

Computer simulation is an important tool in measurement research because it allows

researchers to simulate the testing process with a set of known data.  The description of

this part of the research first elaborates on the procedure for obtaining the data and item

parameters involved, and then expounds on the three different cognitive diagnosis-based

approaches to the item selection procedure.

Data and Parameters

This study is based on real responses to items administered by the Texas

Education Agency.  The item response patterns of a simple random sample of two-

thousand examinees from each of three administrations of the third grade TAAS (years

2000 through 2002) are analyzed using BILOG-MG to obtain the three parameter logistic

model (3PL) item and ability parameters.  The response patterns are also analyzed using

the Arpeggio program (Stout, et al., 2002) to calibrate the fusion model parameters,

including item, person, and attribute parameters.  This analysis leads to a set of values

describing mastery levels for every attribute as well as a traditional IRT ability estimate

for each examinee.

The mastery/non-mastery assignments of the eleven attributes for each of the two
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thousand examinees are determined by dichotomizing the examinee’s values in the jα

vectors using the master proportion, pk, as a cutoff value for attribute k.  An examinee’s

mastery level for a specific attribute takes on a value of one (indicating the given

examinee has mastered the attribute) if jkα  is greater than or equal to the pk value for the

attribute, and a zero (indicating non-mastery) otherwise.  The analysis using Arpeggio

also revises the Q-matrix for the items by means of the stepwise reduction procedure

described in Part One of this chapter.

The values of the ability parameter obtained through the BILOG-MG calibration

will be treated as the known or “true” values and will be denoted as 0θ .  The final

estimates of the ability parameter will be compared with these values.  Likewise, the

dichotomous ability parameters obtained from the Arpeggio analysis will be considered

the known or “true” attribute mastery patterns and will be represent by 0α .

Once the 3PL item parameters and revised Q-matrix entries are obtained for each

item, the process of CAT simulation may begin.  Figure 6 outlines how the item

parameters are obtained.
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Figure 6: Using item response patterns to obtain item and person parameters.

The study’s design for the simulation portion includes three conditions for

comparison.  Each condition reflects a different approach to item selection in adaptive

testing.  The results are then compared with the known values of the examinees’ ability

levels and attribute vectors obtained from the observed response data as described above

to evaluate the accuracy of the three conditions.
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Research Design

The study’s design includes three conditions for reflecting three possible items

selection methods.  One selects items based on the traditional unidimensional IRT-based

ability estimate θ̂  only, another selects items based on the cognitive diagnosis-based

attribute vector estimate α̂  only, and the last selects items based on both.  The first

condition implements the conventional method of focusing solely on θ̂  during item

selection.  The second condition, focusing solely on α̂ , mimics the approach outlined in

Xu, et al. (2003) to select items.  The third condition uses the estimates of both α̂ and θ̂

to select the best item to be administered next in the test.  For all three conditions, the

goal is to estimate both traditional IRT ability estimates (θ̂ ) as well as diagnostic

attribute mastery levels (α̂ ) for each examinee.  The difference between the conditions is

in the item selection procedure of the adaptive assessment.

The third condition is the heart of this study.  It first involves the construction of a

shadow test that is optimized according to the ability level θ̂  (as outlined by van der

Linden and Reese, 1998) before the administration of each item.  Then, the best item for

measuring the attribute vector is selected from the shadow test based on the current α̂

estimate using Shannon Entropy or Kullback-Leibler Information as outlined in Xu, et al.

(2003).  The first two conditions reflect methods which have already been implemented

in previous research.  This third method hold the unique contribution of this research

study by focusing on both traditional IRT ability estimation as well as the cognitively

diagnostic attribute information.
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Condition 1: Theta-based Item Selection.

The first condition uses the conventional method for item selection, which focuses

solely on the theta estimate θ̂  during item selection.  The item to be administered next is

determined as the item with maximum Fisher information given the current estimate of

θ̂ .  Once all of the items are administered, and the final ability estimate is obtained, the

individual attribute vectors α̂  are estimated using the maximum likelihood estimation

procedure.

Condition 2: Alpha-based Item Selection.

The second condition takes the cognitive attribute vector α̂  into account in the

item selection procedure.  In this condition, an item is selected when it is the best item for

the current estimate of the attribute mastery vector α̂  for the given examinee.  To do so,

this condition mimics the approach outlined in Xu, et al. (2003), which uses Shannon

Entropy or Kullback-Liebler Information to determine the best item for a given α̂

estimate.  This study includes both item selection methods of minimizing Shannon

Entropy or maximizing K-L information as sub-conditions of condition 2.  After all items

have been administered and the final estimate of the α̂  attribute vector has been

obtained, the values of the θ̂  ability estimates are calculated from the individual response

patterns using the maximum likelihood estimation procedure.
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Condition 3: Theta- and Alpha-based Item Selection.

Condition 3 is the part of the project that utilizes the shadow testing approach.

The aim of this condition is to simultaneously use θ̂  estimates and α̂  estimates to select

items in a computerized adaptive testing administration.  This third condition has two

sequential sections.  First, a shadow test is constructed that is optimized with respect to

the current estimate of θ̂ .  This ensures that whichever item is selected to be

administered to the examinee is optimal for his/her current estimate of θ̂ .

Notice the reliance on the “current” estimate of θ̂  is this procedure.  Before the

first shadow test can be constructed, an initial “current” estimate of θ̂  and α̂  is required.

Generally, the mean value is used as the initial estimate; this is reasonable because it is

less likely that a given examinee’s true ability level is going to lie in the remote extremes

of possible ability values than near the mean (Thissen and Mislevy, 2000).   So, the mean

of the population of examinees’ ability levels is a suitable initial approximation for an

examinee’s ability estimate (Thissen and Mislevy, 2000), and likewise the mean of the

estimates for the attribute vectors is also a sensible initial estimate for a given examinee’s

attribute mastery vector estimate.  However, the mean of a set of dichotomous variables

is not very meaningful considering the estimates of the attribute mastery levels must also

be dichotomous.  Therefore, a more fitting initial estimate of α̂  would be the most

frequently occurring attribute mastery pattern, or in other words, the mode.

Once the initial estimates of θ̂  and α̂  have been ascertained, a shadow test is

assembled that is optimal at the mean value of the theta ability level.  Naturally, this will
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be the same initial shadow test for all examinees.

As previously mentioned, a shadow test is constructed form an objective function

and a list of constraints by means of the branch-and-bound method using the software

program CPLEX (ILOG, 2003).  The objective function for forming the shadow test

follows the conventional maximization of Fisher information, mathematically denoted as

∑
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Other possible constraints could deal with the type of item administration or the

item duration involved in answering each item.  Recall the original goal of a shadow test

is not only to include a set of items that are optimal for a given ability estimate level, but

also to ensure these items obey content balancing and any other constraint the test

administrator requires.

After inputting this information into CPLEX and completing the analysis, an

output file presents the list of the items to be included in the shadow test.  The purpose of

constructing a shadow test in this manner is to obtain a set of items that are all good items

for the current estimate of θ̂  that also obey the assigned constraints.  Therefore, no

matter which item is selected, it is a good item from the viewpoint of traditional

unidimensional IRT measurement.

The second stage of the process involves selecting the next item to be

administered to the examinee from this shadow test.  This is the stage that takes into

account a cognitive diagnosis component during the item selection process.  Selecting an

item from the shadow test is based on appraising each item’s worth in contributing to the

estimate of the examinee’s α vector.  The additional information regarding the cognitive

attribute vector provided by this approach can be considered supplemental to the

conventional method of looking solely at the unidimensional IRT ability level because all

items in the shadow test are already optimal with regard to the estimate, θ̂ .  So, any

diagnostic information provided by the estimation of the attribute vector may be

considered an extra bonus.  Applicable methods for selecting items from the shadow test

based on diagnostic information include minimizing Shannon Entropy and maximizing
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K-L Information.  Just as in condition 2, each of these methods is considered a sub-

condition within condition 3.

A computer program will be written to calculate the Shannon Entropy of the items

selected by CPLEX for the shadow test and determine the smallest value among them.

Likewise another program will be composed to calculate the K-L information for the set

of items selected by CPLEX and to single out the greatest value among these.  The item

selected by this program after the construction of each shadow test will be the item to be

administered next.  The items in the shadow test that are not selected are retuned to the

item pool.

Once an item is selected, the correctness of the response is simulated by

comparing the probability of obtaining a correct response with a number randomly drawn

from the uniform distribution between zero and unity.  The probability is calculated from

the 3PL model given the examinee’s ability level.  If the random number is greater than

the probability of obtaining a correct response, then the item is scored as incorrect;

otherwise the response is designated as correct.

New estimates of 

€ 

ˆ θ j  and 

€ 

ˆ α j  for examinee j are then calculated given the

responses to all previously administered items using the maximum likelihood estimation

procedure for each.  This cycle of administering selected items and updating the estimates

of θ̂  and α̂  from the simulated responses is repeated again and again until the desired

test length has been administered.  The computer adaptive testing simulation procedure

for condition 3 is illustrated in Figure 7. 
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Figure 7: Computerized adaptive testing simulation process for condition 3.

Upon completion of the simulation study, the final estimates of θ̂  and α̂  are

compared with the known values, 0θ  and 0α , obtained from the initial calibration.  This

comparison is then used to evaluate the various methods and conditions.  The various

conditions of this study are depicted graphically in Figure 8.

Current estimate of 

€ 

ˆ θ j

Current estimate of 

€ 

ˆ α j

Construct a shadow
test optimal at 

€ 

ˆ θ .

Select the best item
from the shadow test
that is optimal at 

€ 

ˆ α .

Administer the selected
item and determine if the

response is correct or
incorrect.

Known value of 

€ 

θ j

Update the estimates
of 

€ 

ˆ θ j  and 

€ 

ˆ α j .

Repeat until
all the items
have been
administered.
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Figure 8: Visual representation of the research design.

Condition 1:
 Select items based on traditional IRT jθ̂  estimates only.

 Estimate jα̂  values afterwards by MLE.

Items selection is based on the maximum information method.

Condition 2:
 Select items based on cognitive jα̂  estimates only.

 Estimate jθ̂ values afterwards by MLE.

Condition 2a:
Item selection is based on
minimizing Shannon Entropy.

Condition 2b:
Item selection is based on
maximizing K-L information.

Condition 3:
 Select items based on both traditional IRT jθ̂  and cognitive

jα̂ estimates.

 Construct a shadow test optimal for the current jθ̂  level.

 Select best item from the shadow test according to the
current estimate of jα̂ .

Condition 3a:
Item selection from the
shadow test is based on
minimizing Shannon Entropy.

Condition 3b:
Item selection from the
shadow test is based on
maximizing K-L information.
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Comparative Evaluation

Results of the three conditions are to be evaluated in terms of the accuracy of both

the attribute mastery level estimates and the traditional IRT ability estimates.  Evaluation

of the attribute vectors is conducted by comparing the final estimated values of 

€ 

ˆ α j  with

the attribute mastery levels from the Arpeggio original analysis of the real data, 0jα , for

each examinee j.  Similarly, the final IRT ability estimates 

€ 

ˆ θ j  is be compared with the

corresponding values of the ability parameter obtained from the BILOG-MG analysis of

the original dataset, 0jθ  for each examinee j.  If a given condition works well, then the

final estimates of both parameters θ  and α  should match the corresponding known

parameters 0θ  and 0α  respectively.

These comparisons are made by means of correlation and scatter plot.  The final

estimates of 

€ 

ˆ α j  is compared with the attribute vectors provided by the Arpeggio analysis

of the original real data by examining the hit rate of each attribute as well as the hit rate

of the entire attribute pattern for each examinee.  The item selection procedure(s) with the

highest correlations and hit rates will be considered superior to the remaining procedures.

If the approach(es) with the highest correlation between known and final estimated values

of the traditional IRT ability parameter does not happen to also have the best hit rates for

the cognitive attribute vectors, then the methods will be evaluated with respect to each

criterion individually.

It is expected that condition 3, which selects items based on both the traditional

IRT ability and the fusion model cognitive attributes will have the best estimates of both
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types of parameters.  Condition 1 is expected to have good estimates for 

€ 

θ , but sub-

optimal estimates for 

€ 

α , while vice versa is expected for condition 2.  The results will be

presented in tabular form in subsequent chapters upon completion of the simulation.
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